The Lake Chad located in the west-central Africa in the Sahel region at the edge of the Sahara experienced severe drought during 1970s and 1980s and overexploitation (unintegrated and unsustainable use), which is a re...The Lake Chad located in the west-central Africa in the Sahel region at the edge of the Sahara experienced severe drought during 1970s and 1980s and overexploitation (unintegrated and unsustainable use), which is a result of variant land uses and water management practices during the last 50 years. This resulted in a decline of the water level in the Lake and surrounding rivers. The present study analyzed satellite images of Lake Chad from Landsat-MSS, Landsat-OLI to investigate the change of the open water surface area during the years of 1973, 1987, 2001, 2013, and 2017. Supervised classifications were performed for the land cover analysis. The open water area in 1973 was covering 16,157.34 km<sup>2</sup> approximately, and that was 64.6% of the total lake area in the 1960s. As an ultimate result of the extreme drought that the study area witnessed through 1970s-1980s, the open water area has decreased to 1831.44 km<sup>2</sup>, <i>i.e.</i> around 11.33%, compared to that in 1973. The dilemma that the study area is suffering from is believed to be a catastrophic complication of the aforementioned drought crisis, which arose as an ultimate result the climate change, global warming, and the unintegrated and unsustainable use of water challenges the study area is still encountering.展开更多
Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dens...Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002) Keywords World Trade Center (WTC) - terrorism - emergency response - emergency management - ground zero - remote sensing - emergency operations - disasters - geographic information systems (GIS) - satellite imagery - synthetic aperture radar (SAR) - light detection and ranging imagery (LIDAR)展开更多
Effective planning relies on accurate and up-to-date information on existing land use and land cover. The timely detection of trends in land use and land cover change and a quantification of such trends are of specifi...Effective planning relies on accurate and up-to-date information on existing land use and land cover. The timely detection of trends in land use and land cover change and a quantification of such trends are of specific interest to planners and decision makers. The aim of this research is to use remote sensing and GIS to monitor landuse and land cover change in Egbeda Local Government Area, Oyo State with a view to determining how useful such information can be to planners and decision makers for effective urban management. The research was conducted using remote sensing and Geographical information System at determining the trend and extent of land use and land cover change and its driving force in Egbeda Local Government Area, Oyo State. The methods used include: digitization, digital image processing and spatial analysis using an inverse distance weighted (IDW) technique, Maximum likelihood supervised classification and post classification change detection techniques were applied to Landsat imageries acquired in 1984, 2006 and 2018. Imageries were classified into built-up area, vegetation, bare surface, cultivation and water body. The results of the analysis obtained showed drastic change in built-up area which rose to 32.8% from 25.4% between 1984 and 2018 periods. To reduce the effect of land use expansion in the study areas, policy measures were recommended which include proper inventory of land use and land cover, regular monitoring of urban areas spread of development and regional development programs. These will enable the government, stakeholders, policy makers and planners to make informed decisions provided by these technologies to attain and sustain future urban development.展开更多
This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two ...This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two pro-grammes were used: an Object-Based Classification and a Pixel-Based Classification. The second classification programme was further subdi-vided into two groups. The first group included classes (buildings, streets, vacant land, vegetations) which were treated simultaneously and on a single image basis. The second, however, was where each class was identified individually, and the results of each class produced a single image and were later enhanced. The classification results were then as-sessed and compared before and after enhancement using visual then automatic assessment. The results of the evaluation showed that the pix-el-based individual classification of each class was rated the highest after enhancement, increasing the Overall Classification Accuracy by 2%, from 89% to 91.00%. The results of this classification type were adopted for mapping Jeddah’s buildings, roads, and vegetations.展开更多
High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection...High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.展开更多
Buckthorns(Glossy buckthorn,Frangula alnus and common buckthorn,Rhamnus cathartica)represent a threat to biodiversity.Their high competitivity lead to the replacement of native species and the inhibition of forest reg...Buckthorns(Glossy buckthorn,Frangula alnus and common buckthorn,Rhamnus cathartica)represent a threat to biodiversity.Their high competitivity lead to the replacement of native species and the inhibition of forest regeneration.Early detection strategies are therefore necessary to limit invasive alien plant species’impacts,and remote sensing is one of the techniques for early invasion detection.Few studies have used phenological remote sensing approaches to map buckthorn distribution from medium spatial resolution images.Those studies highlighted the difficulty of detecting buckthorns in low densities and in understory using this category of images.The main objective of this study was to develop an approach using multi-date very high spatial resolution satellite imagery to map buckthorns in low densities and in the understory in the Québec city area.Three machine learning classifiers(Support Vector Machines,Random Forest and Extreme Gradient Boosting)were applied to WorldView-3,GeoEye-1 and SPOT-7 satellite imagery.The Random Forest classifier performed well(Kappa=0.72).The SVM and XGBoost’s coefficient Kappa were 0.69 and 0.66,respectively.However,buckthorn distribution in understory was identified as the main limit to this approach,and LiDAR data could be used to improve buckthorn mapping in similar environments.展开更多
Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with ...Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.展开更多
Numerous satellites collect imagery of the Earth’s surface daily, providing information to the public and private sectors. The fusion (pan-sharpening) of high-resolution panchromatic satellite imagery with lower-reso...Numerous satellites collect imagery of the Earth’s surface daily, providing information to the public and private sectors. The fusion (pan-sharpening) of high-resolution panchromatic satellite imagery with lower-resolution multispectral satellite imagery has shown promise for monitoring natural resources and farming areas. It results in new imagery with more detail than the original multispectral or panchromatic images. In agricultural areas in Mississippi, landscapes can range from complex mixtures of vegetation and built-up areas to dense vegetative regions. More information is needed on pan-sharpened imagery for assessing landscapes in rural areas of Mississippi. WorldView 3 satellite imagery consisting of landscapes commonly found in rural areas of Mississippi was subjected to 17 pan-sharpening algorithms. The pan-sharpened images were compared qualitatively and quantitatively with three quality indices: 1) Erreur Relative Globale Addimensionelle de Synthese;2) Universal Image Quality Index;3) Bias. à trous wavelet transform with the injection model 3 and hyperspherical color spaced fusion methods were ranked among the best for maintaining image integrity for qualitative and quantitative analyses. The optimized high-pass filter method was often ranked last by the quality indices. The smoothing filter-based intensity modulation algorithm and the gaussian modulation transfer function match filtered with high-pass modulation injection model added artifacts to the images. Pan-sharpened satellite imagery has great potential to enhance the survey of Mississippi’s agricultural areas. The key to success is selecting an image fusion process that increases spatial content while not compromising the image integrity.展开更多
文摘The Lake Chad located in the west-central Africa in the Sahel region at the edge of the Sahara experienced severe drought during 1970s and 1980s and overexploitation (unintegrated and unsustainable use), which is a result of variant land uses and water management practices during the last 50 years. This resulted in a decline of the water level in the Lake and surrounding rivers. The present study analyzed satellite images of Lake Chad from Landsat-MSS, Landsat-OLI to investigate the change of the open water surface area during the years of 1973, 1987, 2001, 2013, and 2017. Supervised classifications were performed for the land cover analysis. The open water area in 1973 was covering 16,157.34 km<sup>2</sup> approximately, and that was 64.6% of the total lake area in the 1960s. As an ultimate result of the extreme drought that the study area witnessed through 1970s-1980s, the open water area has decreased to 1831.44 km<sup>2</sup>, <i>i.e.</i> around 11.33%, compared to that in 1973. The dilemma that the study area is suffering from is believed to be a catastrophic complication of the aforementioned drought crisis, which arose as an ultimate result the climate change, global warming, and the unintegrated and unsustainable use of water challenges the study area is still encountering.
基金the Earthquake Engineering Research Centers Program of the National Science Foundation(NSF) under a Supplement to Award Number ECC-9701471 to the Multidisciplinary Center for Earthquake Engineering Research
文摘Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002) Keywords World Trade Center (WTC) - terrorism - emergency response - emergency management - ground zero - remote sensing - emergency operations - disasters - geographic information systems (GIS) - satellite imagery - synthetic aperture radar (SAR) - light detection and ranging imagery (LIDAR)
文摘Effective planning relies on accurate and up-to-date information on existing land use and land cover. The timely detection of trends in land use and land cover change and a quantification of such trends are of specific interest to planners and decision makers. The aim of this research is to use remote sensing and GIS to monitor landuse and land cover change in Egbeda Local Government Area, Oyo State with a view to determining how useful such information can be to planners and decision makers for effective urban management. The research was conducted using remote sensing and Geographical information System at determining the trend and extent of land use and land cover change and its driving force in Egbeda Local Government Area, Oyo State. The methods used include: digitization, digital image processing and spatial analysis using an inverse distance weighted (IDW) technique, Maximum likelihood supervised classification and post classification change detection techniques were applied to Landsat imageries acquired in 1984, 2006 and 2018. Imageries were classified into built-up area, vegetation, bare surface, cultivation and water body. The results of the analysis obtained showed drastic change in built-up area which rose to 32.8% from 25.4% between 1984 and 2018 periods. To reduce the effect of land use expansion in the study areas, policy measures were recommended which include proper inventory of land use and land cover, regular monitoring of urban areas spread of development and regional development programs. These will enable the government, stakeholders, policy makers and planners to make informed decisions provided by these technologies to attain and sustain future urban development.
文摘This study compares three types of classifications of satellite data to identify the most suitable for making city maps in a semi-arid region. The source of our data was GeoEye 1 satellite. To classify this data, two pro-grammes were used: an Object-Based Classification and a Pixel-Based Classification. The second classification programme was further subdi-vided into two groups. The first group included classes (buildings, streets, vacant land, vegetations) which were treated simultaneously and on a single image basis. The second, however, was where each class was identified individually, and the results of each class produced a single image and were later enhanced. The classification results were then as-sessed and compared before and after enhancement using visual then automatic assessment. The results of the evaluation showed that the pix-el-based individual classification of each class was rated the highest after enhancement, increasing the Overall Classification Accuracy by 2%, from 89% to 91.00%. The results of this classification type were adopted for mapping Jeddah’s buildings, roads, and vegetations.
基金supported by National Key Research and Development Program of China under grant number 2022YFB3903404National Natural Science Foundation of China under grant number 42325105,42071350LIESMARS Special Research Funding.
文摘High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.
文摘Buckthorns(Glossy buckthorn,Frangula alnus and common buckthorn,Rhamnus cathartica)represent a threat to biodiversity.Their high competitivity lead to the replacement of native species and the inhibition of forest regeneration.Early detection strategies are therefore necessary to limit invasive alien plant species’impacts,and remote sensing is one of the techniques for early invasion detection.Few studies have used phenological remote sensing approaches to map buckthorn distribution from medium spatial resolution images.Those studies highlighted the difficulty of detecting buckthorns in low densities and in understory using this category of images.The main objective of this study was to develop an approach using multi-date very high spatial resolution satellite imagery to map buckthorns in low densities and in the understory in the Québec city area.Three machine learning classifiers(Support Vector Machines,Random Forest and Extreme Gradient Boosting)were applied to WorldView-3,GeoEye-1 and SPOT-7 satellite imagery.The Random Forest classifier performed well(Kappa=0.72).The SVM and XGBoost’s coefficient Kappa were 0.69 and 0.66,respectively.However,buckthorn distribution in understory was identified as the main limit to this approach,and LiDAR data could be used to improve buckthorn mapping in similar environments.
基金Meteorological Research in the Public Interest,No.GYHY201106014Beijing Nova Program,No.2010B037China Special Fund for the National High Technology Research and Development Program of China(863 Program),No.412230
文摘Snow depth (SD) is a key parameter for research into global climate changes and land surface processes. A method was developed to obtain daily SD images at a higher 4 km spatial resolution and higher precision with SD measurements from in situ observations and passive microwave remote sensing of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and snow cover measurements of the Interactive Multisensor Snow and Ice Mapping System (IMS). AMSR-E SD at 25 km spatial resolution was retrieved from AMSR-E products of snow density and snow water equivalent and then corrected using the SD from in situ observations and IMS snow cover. Corrected AMSR-E SD images were then resampled to act as "virtual" in situ observations to combine with the real in situ observations to interpolate at 4 km spatial resolution SD using the Cressman method. Finally, daily SD data generation for several regions of China demonstrated that the method is well suited to the generation of higher spatial resolution SD data in regions with a lower Digital Elevation Model (DEM) but not so well suited to regions at high altitude and with an undulating terrain, such as the Tibetan Plateau. Analysis of the longer time period SD data generation for January between 2003 and 2010 in northern Xinjiang also demonstrated the feasibility of the method.
文摘Numerous satellites collect imagery of the Earth’s surface daily, providing information to the public and private sectors. The fusion (pan-sharpening) of high-resolution panchromatic satellite imagery with lower-resolution multispectral satellite imagery has shown promise for monitoring natural resources and farming areas. It results in new imagery with more detail than the original multispectral or panchromatic images. In agricultural areas in Mississippi, landscapes can range from complex mixtures of vegetation and built-up areas to dense vegetative regions. More information is needed on pan-sharpened imagery for assessing landscapes in rural areas of Mississippi. WorldView 3 satellite imagery consisting of landscapes commonly found in rural areas of Mississippi was subjected to 17 pan-sharpening algorithms. The pan-sharpened images were compared qualitatively and quantitatively with three quality indices: 1) Erreur Relative Globale Addimensionelle de Synthese;2) Universal Image Quality Index;3) Bias. à trous wavelet transform with the injection model 3 and hyperspherical color spaced fusion methods were ranked among the best for maintaining image integrity for qualitative and quantitative analyses. The optimized high-pass filter method was often ranked last by the quality indices. The smoothing filter-based intensity modulation algorithm and the gaussian modulation transfer function match filtered with high-pass modulation injection model added artifacts to the images. Pan-sharpened satellite imagery has great potential to enhance the survey of Mississippi’s agricultural areas. The key to success is selecting an image fusion process that increases spatial content while not compromising the image integrity.
基金国家自然科学基金重大研究 (3 9893 3 60 )青年科学家小组 (C2 9990 83 )资助项目+1 种基金World Bank的 BRIM(Biodiversity Research and Information Management)项目 NASA Earth Observation System Interdisci-plinary Science Program的资助