期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation
1
作者 Yongqiang Guo Zhiyuan Lv 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1855-1870,共16页
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of... In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method. 展开更多
关键词 Reliability-based multidisciplinary design optimization moment method saddlepoint approximate sequence optimization and reliability assessment performance measure approach
下载PDF
An Efficient Method for Reliability-based Multidisciplinary Design Optimization 被引量:12
2
作者 范辉 李为吉 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期335-340,共6页
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ... Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process. 展开更多
关键词 multidisciplinary design optimization (MDO) concurrent subspace optimization reliability analysis advanced first order second moment method
下载PDF
EFFICIENT METHOD FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION BY CONSIDERING UNCERTAINTY
3
作者 贺谦 李元生 +2 位作者 敖良波 温志勋 岳珠峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期213-218,共6页
A new reliability-based multidisciplinary design optimization (RBMDO) framework is proposed by combining the single-loop-based reliability analysis (SLBRA) method with multidisciplinary feasible (MDF) method. Th... A new reliability-based multidisciplinary design optimization (RBMDO) framework is proposed by combining the single-loop-based reliability analysis (SLBRA) method with multidisciplinary feasible (MDF) method. The Kriging approximate model with updating is introduced to reduce the computational cost of MDF caused by the complex structure. The computational efficiency is remarkably improved as the lack of iterative process during reliability analysis. Special attention is paid to a turbine blade design optimization by adopting the proposed method. Results show that the method is much more efficient than the commonly used double-loop based RBMDO method. It is feasible and efficient to apply the method to the engineering design. 展开更多
关键词 multidisciplinary design optimization multidisciplinary feasible method single loop method reliability analysis Kriging approximate model
下载PDF
Multidisciplinary Design Optimization of Vehicle Instrument Panel Based on Multi-objective Genetic Algorithm 被引量:14
4
作者 WANG Ping WU Guangqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期304-312,共9页
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the aut... Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO. 展开更多
关键词 instrument panel(IP) NVH SAFETY multidisciplinary design optimization multi-objective optimization
下载PDF
Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design 被引量:9
5
作者 Z.L.Huang Y.S.Zhou +2 位作者 C.Jiang J.Zheng X.Han 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期285-302,共18页
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici... Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method. 展开更多
关键词 Reliability-based design optimization(RBDO) multidisciplinary design optimization(MDO) Incremental shifting vector(ISV) Decoupling algorithm Electronic product
下载PDF
Effect of Variable Selection on Multidisciplinary Design Optimization:a Flight Vehicle Example 被引量:7
6
作者 J.Roshanian Z.Keshavarz 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期86-96,共11页
Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the... Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the referred vehicle, three disciplines have been considered, which are trajectory, propulsion and aerodynamics. A special design structure matrix is developed to assist data exchange between disciplines. This design process uses response surface method (RSM) for multidisciplinary optimization of the rocket. The RSM is applied to the design in two categories: the propulsion model and the system level. In the propulsion model, RSM determines an approximate mathematical model of the engine output parameters as a function of design variables. In the system level, RSM fits a surface of objective function versus design variables. In the first MDO problem formulation, two design variables are selected to form propulsion discipline. In the second one, three new design variables from geometry are added and finally, an optimization method is applied to the response surface in the system level in order to find the best result. Application of the first developed multidisciplinary design optimization procedure increased accessible altitude (performance index) of the referred sounding rocket by twenty five percents and the second one twenty nine. 展开更多
关键词 multidisciplinary design optimization sounding rocket central composite design response surface method equation of motion of a rocket
下载PDF
Multidisciplinary Design Optimization of A Human Occupied Vehicle Based on Bi-Level Integrated System Collaborative Optimization 被引量:4
7
作者 赵敏 崔维成 李翔 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期599-610,共12页
The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience depend... The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO. 展开更多
关键词 multidisciplinary design optimization (MDO) Human Occupied Vehicle (HOD Bi-Level Integrated SystemCollaborative optimization (BLISCO) general performance
下载PDF
Multidisciplinary design optimization on production scale of underground metal mine 被引量:4
8
作者 左红艳 罗周全 +1 位作者 管佳林 王益伟 《Journal of Central South University》 SCIE EI CAS 2013年第5期1332-1340,共9页
In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of produc... In order to ensure overall optimization of the underground metal mine production scale, multidisciplinary design optimization model of production scale which covers the subsystem objective function of income of production, safety and environmental impact in the underground metal mine was established by using multidisciplinary design optimization method. The coupling effects from various disciplines were fully considered, and adaptive mutative scale chaos immunization optimization algorithm was adopted to solve multidisciplinary design optimization model of underground metal mine production scale. Practical results show that multidisciplinary design optimization on production scale of an underground lead and zinc mine reflect the actual operating conditions more realistically, the production scale is about 1.25 Mt/a (Lead and zinc metal content of 160 000 t/a), the economic life is approximately 14 a, corresponding coefficient of production profits can be increased to 15.13%, safety factor can be increased to 5.4% and environmental impact coefficient can be reduced by 9.52%. 展开更多
关键词 underground metal mines production scale multidisciplinary design optimization adaptive mutative scale chaosoptimization algorithm immunization
下载PDF
Uncertain Multidisciplinary Design Optimization on Next Generation Subsea Production System by Using Surrogate Model and Interval Method 被引量:3
9
作者 WU Jia-hao ZHEN Xing-wei +1 位作者 LIU Gang HUANG Yi 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期609-621,共13页
The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which... The innovative Next Generation Subsea Production System(NextGen SPS)concept is a newly proposed petroleum development solution in ultra-deep water areas.The definition of NextGen SPS involves several disciplines,which makes the design process difficult.In this paper,the definition of NextGen SPS is modeled as an uncertain multidisciplinary design optimization(MDO)problem.The deterministic optimization model is formulated,and three concerning disciplines—cost calculation,hydrodynamic analysis and global performance analysis are presented.Surrogate model technique is applied in the latter two disciplines.Collaborative optimization(CO)architecture is utilized to organize the concerning disciplines.A deterministic CO framework with two disciplinelevel optimizations is proposed firstly.Then the uncertainties of design parameters and surrogate models are incorporated by using interval method,and uncertain CO frameworks with triple loop and double loop optimization structure are established respectively.The optimization results illustrate that,although the deterministic MDO result achieves higher reduction in objective function than the uncertain MDO result,the latter is more reliable than the former. 展开更多
关键词 next generation subsea production system multidisciplinary design optimization uncertain optimization collaborative optimization surrogate model interval method
下载PDF
APPLICATION OF HYBRID GENETIC ALGORITHM IN AEROELASTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION OF LARGE AIRCRAFT 被引量:2
10
作者 唐长红 万志强 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期109-117,共9页
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th... The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm. 展开更多
关键词 aeroelasticity multidisciplinary design optimization genetic/gradient-based hybrid algorithm large aircraft
下载PDF
Applying the disciplinary relation matrix to multidisciplinary design optimization modeling and solving 被引量:1
11
作者 Hua Su Liangxian Gu Chunlin Gong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期703-716,共14页
A new efficient coupling relationship description method has been developed to provide an automated and visualized way to multidisciplinary design optimization (MDO) modeling and solving. The disciplinary relation mat... A new efficient coupling relationship description method has been developed to provide an automated and visualized way to multidisciplinary design optimization (MDO) modeling and solving. The disciplinary relation matrix (DRM) is proposed to describe the coupling relationship according to disciplinary input/output variables, and the MDO definition has been reformulated to adopt the new interfaces. Based on these, a universal MDO solving procedure is proposed to establish an automated and efficient way for MDO modeling and solving. Through a simple and convenient initial configuration, MDO problems can be solved using any of available MDO architectures with no further effort. Several examples are used to verify the proposed MDO modeling and solving process. Result shows that the DRM method has the ability to simplify and automate the MDO procedure, and the related MDO framework can evaluate the MDO problem automatically and efficiently. 展开更多
关键词 multidisciplinary design optimization (MDO) problem definition solution architecture solving automation
下载PDF
Multidisciplinary Design Optimization with a New Effective Method 被引量:1
12
作者 CHEN Xiaokai LI Bangguo LIN Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期505-510,共6页
Collaborative optimization (CO) is one of the most widely used methods in multidisciplinary design optimization (MDO), which is an effective methodology to solve modem complex engineering problems. CO consists of ... Collaborative optimization (CO) is one of the most widely used methods in multidisciplinary design optimization (MDO), which is an effective methodology to solve modem complex engineering problems. CO consists of two-level optimization problems which are system optimization problem and subspace optimization problem. The architecture of CO can reserve the autonomy of individual disciplines in maximum, while providing a mechanism for coordinating design problem. However, CO has low computation efficiency and is easy to diverge. For the purpose of solving these problems, the former improved methods were studied. The relaxation factors were used to change the system consistency constraints to inequality constraints, or the response surface estimation was used to surrogate the system consistency constraints. However, these methods didn't avoid the computational difficulties very well, furthermore, some new problems arose. The concept of optimum constraint sensitivity was proposed, and the quadratic constraints in system level were reformed. Hence, a new collaborative optimization was developed, which is called system level dynamic constraint collaborative optimization (DCCO). The novel method is able to increase the exchange of information between system level and disciplinary level. The optimization results of each disciplinary optimization can be feedback to system level with the optimum constraint sensitivity. On the basis of the information, the new system level linear dynamic constraints can be constructed; it is better to reflect the effect of disciplinary level optimizations. The system level optimizer can clearly capture the boundary where disciplinary objective functions become zero, and considerably enhance the convergence. Two standard MDO examples were conducted to verify the feasibility and effectiveness of DCCO. The results show that DCCO can save the solving time, and is much better in terms of convergence and robustness, hence, the new method is more efficient. 展开更多
关键词 multidisciplinary design optimization (MDO) collaborative optimization (CO) dynamic constraint
下载PDF
Robust Multiobjective and Multidisciplinary Design Optimization of Electrical Drive Systems 被引量:3
13
作者 Gang Lei Tianshi Wang +1 位作者 Jianguo Zhu Youguang Guo 《CES Transactions on Electrical Machines and Systems》 2018年第4期409-416,共8页
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th... Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system. 展开更多
关键词 Electrical drive systems electrical machines multidisciplinary design optimization multiobjective optimization robust design optimization
下载PDF
Stability analysis of underground engineering based on multidisciplinary design optimization
14
作者 马荣 周科平 高峰 《Journal of Coal Science & Engineering(China)》 2008年第4期608-612,共5页
Aiming at characteristics of underground engineering,analyzed the feasibility of Multidisciplinary Design Optimization (MDO) used in underground engineering,and put forward a modularization-based MDO method and the id... Aiming at characteristics of underground engineering,analyzed the feasibility of Multidisciplinary Design Optimization (MDO) used in underground engineering,and put forward a modularization-based MDO method and the idea of MDO to resolve problems in stability analysis,proving the validity and feasibility of using MDO in underground engi- neering.Characteristics of uncertainty,complexity and nonlinear become bottle-neck to carry on underground engineering stability analysis by MDO.Therefore,the application of MDO in underground engineering stability analysis is still at a stage of exploration,which need some deep research. 展开更多
关键词 underground engineering multidisciplinary design optimization (MDO) stability analysis optimum algorithm
下载PDF
Multidisciplinary Modeling and Optimization Method of Remote Sensing Satellite Parameters Based on SysML-CEA 被引量:1
15
作者 Changyong Chu Chengfang Yin +2 位作者 Shuo Shi Shaohui Su Chang Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1413-1434,共22页
To enhance the efficiency of system modeling and optimization in the conceptual design stage of satellite parameters,a system modeling and optimization method based on System Modeling Language and Co-evolutionary Algo... To enhance the efficiency of system modeling and optimization in the conceptual design stage of satellite parameters,a system modeling and optimization method based on System Modeling Language and Co-evolutionary Algorithm is proposed.At first,the objectives of satellite mission and optimization problems are clarified,and a design matrix of discipline structure is constructed to process the coupling relationship of design variables and constraints of the orbit,payload,power and quality disciplines.In order to solve the problem of increasing nonlinearity and coupling between these disciplines while using a standard collaborative optimization algorithm,an improved genetic algorithm is proposed and applied to system-level and discipline-level models.Finally,the CO model of satellite parameters is solved through the collaborative simulation of Cameo Systems Modeler(CSM)and MATLAB.The result obtained shows that the method proposed in this paper for the conceptual design phase of satellite parameters is efficient and feasible.It can shorten the project cycle effectively and additionally provide a reference for the optimal design of other complex projects. 展开更多
关键词 SYSML remote sensing satellite multidisciplinary design optimization collaborative optimization
下载PDF
Aerodynamic/Stealthy/Structural Multidisciplinary Design Optimization of Unmanned Combat Air Vehicle 被引量:23
16
作者 Hu Tianyuan,Yu Xiongqing Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第4期380-386,共7页
An optimization strategy is proposed to deal with the aerodynamic/stealthy/structural multidisciplinary design optimization (MDO) issue of unmanned combat air vehicle (UCAV). In applying the strategy, the MDO proc... An optimization strategy is proposed to deal with the aerodynamic/stealthy/structural multidisciplinary design optimization (MDO) issue of unmanned combat air vehicle (UCAV). In applying the strategy, the MDO process is divided into two levels, i.e. system level optimization and subsystem level optimization. The system level optimization is to achieve optimized system objective (or multi-objective) through the adjustment of global external configuration design variables. The subsystem level optimization consists of the aerodynamic/stealthy integrated design and the structural optimization. The aerodynamic/stealthy integrated design aims at achieving the minimum aerodynamic drag coefficient under the constraint of stealthy requirement through the adjustment of local external configuration design variables. The structural optimization is to minimize the structural weight by adjusting the dimefisions of structural components. A flowchart to implement this strategy is presented. The MDO for a flying-wing configuration of UCAV is employed to illustrate the detailed process of the optimization. The results indicate that the overall process of the surrogate-based two-level optimization strategy can be implemented automatically, and quite reasonable results are obtained. 展开更多
关键词 aircraft design multidisciplinary design optimization AERODYNAMICS radar cross section structure
原文传递
An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization 被引量:14
17
作者 Ouan-bao WANG Ji-an CHEN Gong-yi FU Deng-ping DUAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第11期1609-1616,共8页
Airship shape is crucial to the design of stratosphere airships. In this paper, multidisciplinary design optimization (MDO) technology is introduced into the design of airship shape. We devise a composite objective fu... Airship shape is crucial to the design of stratosphere airships. In this paper, multidisciplinary design optimization (MDO) technology is introduced into the design of airship shape. We devise a composite objective function, based on this technology, which takes account of various factors which influence airship performance, including aerodynamics, structures, energy and weight to determine the optimal airship shape. A shape generation algorithm is proposed and appropriate mathematical models are constructed. Simulation results show that the optimized shape gives an improvement in the value of the composite objective function compared with a reference shape. 展开更多
关键词 Airship shape multidisciplinary design optimization (MDO) Adaptive simulation annealing Stratosphere airship
原文传递
Aircraft robust multidisciplinary design optimization methodology based on fuzzy preference function 被引量:4
18
作者 Ali Reza BABAEI Mohammad Reza SETAYANDEH Hamid FARROKHFAL 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第12期2248-2259,共12页
This paper presents a Fuzzy Preference Function-based Robust Multidisciplinary Design Optimization(FPF-RMDO) methodology. This method is an effective approach to multidisciplinary systems, which can be used to designe... This paper presents a Fuzzy Preference Function-based Robust Multidisciplinary Design Optimization(FPF-RMDO) methodology. This method is an effective approach to multidisciplinary systems, which can be used to designer experiences during the design optimization process by fuzzy preference functions. In this study, two optimizations are done for Predator MQ-1 Unmanned Aerial Vehicle(UAV):(A) deterministic optimization and(B) robust optimization. In both problems, minimization of takeoff weight and drag is considered as objective functions, which have been optimized using Non-dominated Sorting Genetic Algorithm(NSGA). In the robust design optimization, cruise altitude and velocity are considered as uncertainties that are modeled by the Monte Carlo Simulation(MCS) method. Aerodynamics, stability and control, mass properties, performance, and center of gravity are used for multidisciplinary analysis. Robust design optimization results show 46% and 42% robustness improvement for takeoff weight and cruise drag relative to optimal design respectively. 展开更多
关键词 Fuzzy logic multidisciplinary design optimization Preference function Robust design Unmanned Aerial Vehicle(UAV)
原文传递
An optimization method for metamorphic mechanisms based on multidisciplinary design optimization 被引量:8
19
作者 Zhang Wuxiang Wu Teng Ding Xilun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1612-1618,共7页
The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its mult... The optimization of metamorphic mechanisms is different from that of the conventional mechanisms for its characteristics of multi-configuration. There exist complex coupled design variables and constraints in its multiple different configuration optimization models. To achieve the compatible optimized results of these coupled design variables, an optimization method for metamorphic mechanisms is developed in the paper based on the principle of multidisciplinary design optimization(MDO). Firstly, the optimization characteristics of the metamorphic mechanism are summarized distinctly by proposing the classification of design variables and constraints as well as coupling interactions among its different configuration optimization models. Further, collaborative optimization technique which is used in MDO is adopted for achieving the overall optimization performance. The whole optimization process is then proposed by constructing a two-level hierarchical scheme with global optimizer and configuration optimizer loops. The method is demonstrated by optimizing a planar five-bar metamorphic mechanism which has two configurations,and results show that it can achieve coordinated optimization results for the same parameters in different configuration optimization models. 展开更多
关键词 Configuration Mechanism Metamorphic mechanisms Method multidisciplinary design optimization optimization model
原文传递
Design methodology of a mini-missile considering flight performance and guidance precision
20
作者 ZHANG Licong GONG Chunlin +1 位作者 SU Hua ANDREA Da Ronch 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期195-210,共16页
The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs m... The design of mini-missiles(MMs)presents several novel challenges.The stringent mission requirement to reach a target with a certain precision imposes a high guidance precision.The miniaturization of the size of MMs makes the design of the guidance,navigation,and control(GNC)have a larger-thanbefore impact on the main-body design(shape,motor,and layout design)and its design objective,i.e.,flight performance.Pursuing a trade-off between flight performance and guidance precision,all the relevant interactions have to be accounted for in the design of the main body and the GNC system.Herein,a multi-objective and multidisciplinary design optimization(MDO)is proposed.Disciplines pertinent to motor,aerodynamics,layout,trajectory,flight dynamics,control,and guidance are included in the proposed MDO framework.The optimization problem seeks to maximize the range and minimize the guidance error.The problem is solved by using the nondominated sorting genetic algorithm II.An optimum design that balances a longer range with a smaller guidance error is obtained.Finally,lessons learned about the design of the MM and insights into the trade-off between flight performance and guidance precision are given by comparing the optimum design to a design provided by the traditional approach. 展开更多
关键词 mini-missiles(MMs) GUIDANCE NAVIGATION and control(GNC)system multi-objective optimization multidisciplinary design optimization(MDO) flight performance guidance precision
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部