ABSTRACT The multipath has long been considered a major error source in GPS applications .The characteristics 0f the GPS signal multipath effects are analyzed. based on which an experiment that considers the characte...ABSTRACT The multipath has long been considered a major error source in GPS applications .The characteristics 0f the GPS signal multipath effects are analyzed. based on which an experiment that considers the characteristics of dynamic deformation monitoring has been carried out. The solution results of observation data in two successive days are processed by a method,which combines the wavelet filtering and the differential correction betweentwo successive days. The research demonstrates that the multipath errors have stronger repeatability on successive days;after significantly mitigating the influence of multipath effects,the accuracy of three-dimensional positioning for GPS dynamic deformation monitoring can attain the mm level,an obvious accuracy improving particularly invertical component.The characteristics of GPS signal multipath,th eexperimental scheme and the qualitative and quantitative analysis of results are detailed.展开更多
This paper discusses the time-of-arrival(TOA) based indoor visible light communication(VLC) positioning system in a non-line-of-sight environment. The propagation delay is assumed to be gamma distributed. The generali...This paper discusses the time-of-arrival(TOA) based indoor visible light communication(VLC) positioning system in a non-line-of-sight environment. The propagation delay is assumed to be gamma distributed. The generalized Cramer–Rao lower bound for multipath propagation is derived as the theoretical accuracy limitation. The performance of the positioning system is affected by the shape parameter and the scale parameter of gamma distribution.The influences on positioning accuracy of multipath effects are analyzed through discussing the physical meaning of the gamma distribution parameters. It is concluded that the lower bound of positioning accuracy is attained when variance of the non-line-of-sight propagation-induced path lengths is zero. The simulation result provesthat the theoretical positioning accuracy is in the order of centimeters with the given scenario.展开更多
Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or e...Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or eliminated.In order to improve the accuracy of GPS positioning,the single-epoch pseudorange multipath effects at GPS station were calculated,and firstly modeled based on the spherical cap harmonic(SCH),which is the function of satellite longitude and latitude with the robust method.The accuracy of the kinematic point positioning technique was improved by correcting pseudorange observations with the multipath effect calculated by the SCH model,especially in the elevation direction.The spherical cap harmonic can be used to model the pseudorange multipath effect.展开更多
The present analysis provided the quality assessment of 65 Continuous Operating Reference Stations(CORS) situated in and around Mexico using the data of about ten years(January 2010 to January 2020).To accomplish the ...The present analysis provided the quality assessment of 65 Continuous Operating Reference Stations(CORS) situated in and around Mexico using the data of about ten years(January 2010 to January 2020).To accomplish the assessment,we considered 4 quality indexes for performing the quality check,incluing the multipath effect on L1 and L2 bands,signal-to-noise ratio in both bands,cycle slips,and integrity.Meanwhile,a new reference parameter named regio nal values for Mexico(RVM) was calculated for the stations situated in Mexico.Additionally,an exhaustive analysis of the quality indicators in the worst and best cases was performed.The signal degradation was proved by a long-term time series and cru stal defo rmation analysis in GAMIT/GLOBK platform.The results showed a stro ng correlation between integrity,cycle slips and daily observations time,and the multipath effect is strong in the case of outdated systems.The study indicates that the estimated quality indexes and values could be the basis for establishing new CORS in Mexico,and the errors corrections which cannot be mitigated in the postprocessing stage would greatly help utilize the data for different scientific applications.The results were supported by deformation analysis in part of Baja California Peninsula in Mexico indicating northern and eastern velocity vector of -3.08±0.02 mm/yr,-7.85±0.02 mm/yr and-0.07±0.03 mm/yr,-9.33±0.02 mm/yr respectively at MPR1 and INEG stations.展开更多
In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., ...In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.展开更多
In this paper,a design of ultraphonic tubulous water communication system based on OFDM is introduced. The system takes PL3106 which is embedded enhanced 8051 microprocessor as the control chip and takes TMS320VC5509 ...In this paper,a design of ultraphonic tubulous water communication system based on OFDM is introduced. The system takes PL3106 which is embedded enhanced 8051 microprocessor as the control chip and takes TMS320VC5509 as the core of OFDM modulation-demodulation.In the paper,the principle of OFDM is introduced briefly.The hardware and software of the system are designed and the experimental results are analysed and concluded.展开更多
This paper presents a learning-based control policy design for point-to-point vehicle positioning in the urban environment via BeiDou navigation.While navigating in urban canyons,the multipath effect is a kind of inte...This paper presents a learning-based control policy design for point-to-point vehicle positioning in the urban environment via BeiDou navigation.While navigating in urban canyons,the multipath effect is a kind of interference that causes the navigation signal to drift and thus imposes severe impacts on vehicle localization due to the reflection and diffraction of the BeiDou signal.Here,the authors formulated the navigation control system with unknown vehicle dynamics into an optimal control-seeking problem through a linear discrete-time system,and the point-to-point localization control is modeled and handled by leveraging off-policy reinforcement learning for feedback control.The proposed learning-based design guarantees optimality with prescribed performance and also stabilizes the closed-loop navigation system,without the full knowledge of the vehicle dynamics.It is seen that the proposed method can withstand the impact of the multipath effect while satisfying the prescribed convergence rate.A case study demonstrates that the proposed algorithms effectively drive the vehicle to a desired setpoint under the multipath effect introduced by actual experiments of BeiDou navigation in the urban environment.展开更多
Low-angle estimation for very high frequency(VHF)radar is a difficult problem due to the multipath effect in the radar field,especially in complex scenarios where the reflection condition is unknown.To deal with this ...Low-angle estimation for very high frequency(VHF)radar is a difficult problem due to the multipath effect in the radar field,especially in complex scenarios where the reflection condition is unknown.To deal with this problem,we propose an algorithm of target height and multipath attenuation joint estimation.The amplitude of the surface reflection coefficient is estimated by the characteristic of the data itself,and it is assumed that there is no reflected signal when the amplitude is very small.The phase of the surface reflection coefficient and the phase difference between the direct and reflected signals are searched as the same part,and this represents the multipath phase attenuation.The Cramer-Rao bound of the proposed algorithm is also derived.Finally,computer simulations and real data processing results show that the proposed algorithm has good estimation performance under complex scenarios and works well with only one snapshot.展开更多
On December 27,2018,the basic system of the third-generation BeiDou navigation satellite system(BDS-3)completed the deployment of its constellation of 18 MEO networking satellites as well as the construction of the op...On December 27,2018,the basic system of the third-generation BeiDou navigation satellite system(BDS-3)completed the deployment of its constellation of 18 MEO networking satellites as well as the construction of the operation control system(OCS)and began to provide basic navigation services to users worldwide.Compared with BDS-2,BDS-3 aims to offer users better navigation signals and higher precision with a series of new technologies.For example,the spaceborne atomic clock of BDS-3 is upgraded for higher performance,the Ka-band inter-satellite link is adopted for inter-satellite ranging and communication,and new B1C and B2a signals are broadcast in addition to B1I and B3I signals(compatible with BDS-2).In addition,a 9-parameter model based on a spherical harmonic function is employed for ionospheric delay corrections.Using the observation data from 18 satellites of the basic system,this paper conducts a comprehensive evaluation of the pseudorange measurement characteristics,signal-in-space(SIS)accuracy of navigation messages and global service capability of BDS-3.The results indicate that the pseudorange measurement multipath effect and observation noise of BDS-3 satellites are better than those of BDS-2;additionally,with the support of inter-satellite links,the user range error(URE)of the BDS-3 satellite broadcast ephemeris is better than 10 cm,the precision of the broadcast clock parameter is better than 1.5 ns,and the SIS accuracy is better than 0.6 m overall.Different from the traditional Klobuchar model,the BeiDou global broadcast ionospheric delay correction model(BDGIM)can provide ionospheric delay corrections better than 70%for worldwide single-frequency users.The service capability evaluation of the basic system consists mainly of the accuracy improvement of the B1I and B3I signals according to BDS-2 as well as the global positioning accuracy of the new signals.These results prove that the BDS-3 basic system has achieved the design goal;that is,both the horizontal and the vertical global positioning accuracies are better than 10 m(95%).In the future,6 MEO satellites as well as 3 GEO satellites and 3 IGSO satellites for regional enhancement purposes will be deployed for full operation;consequently,BDS-3 will definitely provide a higher SIS accuracy and better service capability.展开更多
The multi-antenna synchronized global navi- gation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can b...The multi-antenna synchronized global navi- gation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase wind- up calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.展开更多
This paper introduces the design and construction of global navigation satellite systems(GNSS)vulnerability simulation,verification,and mitigation platform.The platform contains five modules:simulation of the signal-i...This paper introduces the design and construction of global navigation satellite systems(GNSS)vulnerability simulation,verification,and mitigation platform.The platform contains five modules:simulation of the signal-in-space environment,simulation of the vulnerabilities in the space segment,signal quality monitoring and data processing,vulnerability assessment and validation,and integrated control.It provides a set of integrated simulations of different types of interference in the GNSS signal propagation domain,including electromagnetic interference,atmospheric disturbances,multipath,and interference in the inter-satellite link.This paper focuses on the design of the main system modules and testing through an experimental analysis.The results demonstrate both the effectiveness and realism of the modules and overall platform.展开更多
文摘ABSTRACT The multipath has long been considered a major error source in GPS applications .The characteristics 0f the GPS signal multipath effects are analyzed. based on which an experiment that considers the characteristics of dynamic deformation monitoring has been carried out. The solution results of observation data in two successive days are processed by a method,which combines the wavelet filtering and the differential correction betweentwo successive days. The research demonstrates that the multipath errors have stronger repeatability on successive days;after significantly mitigating the influence of multipath effects,the accuracy of three-dimensional positioning for GPS dynamic deformation monitoring can attain the mm level,an obvious accuracy improving particularly invertical component.The characteristics of GPS signal multipath,th eexperimental scheme and the qualitative and quantitative analysis of results are detailed.
基金supported by the National Key Basic Research Program of China (973 program) under grant 2013CB32920the Natural Science Foundation of China under grant 61375083
文摘This paper discusses the time-of-arrival(TOA) based indoor visible light communication(VLC) positioning system in a non-line-of-sight environment. The propagation delay is assumed to be gamma distributed. The generalized Cramer–Rao lower bound for multipath propagation is derived as the theoretical accuracy limitation. The performance of the positioning system is affected by the shape parameter and the scale parameter of gamma distribution.The influences on positioning accuracy of multipath effects are analyzed through discussing the physical meaning of the gamma distribution parameters. It is concluded that the lower bound of positioning accuracy is attained when variance of the non-line-of-sight propagation-induced path lengths is zero. The simulation result provesthat the theoretical positioning accuracy is in the order of centimeters with the given scenario.
基金Project (41374009) supported by the National Natural Science Foundation of ChinaProjects (TJES1101,TJES1203) supported by the Key Laboratory of Advanced Engineering Surveying of NASMG,China+1 种基金Project (ZR2013DM009) supported by the Shandong Natural Science Foundation of ChinaProject (201412001) supported by the Public Benefit Scientific Research Project of China
文摘Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or eliminated.In order to improve the accuracy of GPS positioning,the single-epoch pseudorange multipath effects at GPS station were calculated,and firstly modeled based on the spherical cap harmonic(SCH),which is the function of satellite longitude and latitude with the robust method.The accuracy of the kinematic point positioning technique was improved by correcting pseudorange observations with the multipath effect calculated by the SCH model,especially in the elevation direction.The spherical cap harmonic can be used to model the pseudorange multipath effect.
基金data provided by the GAGE Facility, operated by UNAVCO, Inc., with support from the National Science Foundation and the National Aeronautics and Space Administration under NSF Cooperative Agreement EAR-1724794。
文摘The present analysis provided the quality assessment of 65 Continuous Operating Reference Stations(CORS) situated in and around Mexico using the data of about ten years(January 2010 to January 2020).To accomplish the assessment,we considered 4 quality indexes for performing the quality check,incluing the multipath effect on L1 and L2 bands,signal-to-noise ratio in both bands,cycle slips,and integrity.Meanwhile,a new reference parameter named regio nal values for Mexico(RVM) was calculated for the stations situated in Mexico.Additionally,an exhaustive analysis of the quality indicators in the worst and best cases was performed.The signal degradation was proved by a long-term time series and cru stal defo rmation analysis in GAMIT/GLOBK platform.The results showed a stro ng correlation between integrity,cycle slips and daily observations time,and the multipath effect is strong in the case of outdated systems.The study indicates that the estimated quality indexes and values could be the basis for establishing new CORS in Mexico,and the errors corrections which cannot be mitigated in the postprocessing stage would greatly help utilize the data for different scientific applications.The results were supported by deformation analysis in part of Baja California Peninsula in Mexico indicating northern and eastern velocity vector of -3.08±0.02 mm/yr,-7.85±0.02 mm/yr and-0.07±0.03 mm/yr,-9.33±0.02 mm/yr respectively at MPR1 and INEG stations.
基金supported by the National Natural Science Foundation of China(61101224)the Research on the Altitude Measurement Method for VHF Radar under the Complicated Environment
文摘In order to realize the elevation angle estimation for low-altitude targets at a low computational cost, a generalized multiple signal classification (GMUSIC) algorithm based on unitary transform is proposed, i.e., the DU-GMUSlC algorithm. Firstly, the covariance matrix of received data is used to construct the Centro- Hermitian matrix. Then, the real-domain GMUSIC algorithm is used to implement the initial angle estimation, and the multipath attenuation coefficient is calculated in succession. Finally, the attenuation coefficient is taken into account in the GMUSIC method to carry out the secondary angle estimation which is beneficial to further improvement of the angle estimation accuracy. This method can meet requirements of low-angle accuracy as well as lower computational burden. Simulation results prove the correctness and effectiveness of the proposed algorithm. Moreover, field experiment data are used to further validate the effectiveness of this method.
文摘In this paper,a design of ultraphonic tubulous water communication system based on OFDM is introduced. The system takes PL3106 which is embedded enhanced 8051 microprocessor as the control chip and takes TMS320VC5509 as the core of OFDM modulation-demodulation.In the paper,the principle of OFDM is introduced briefly.The hardware and software of the system are designed and the experimental results are analysed and concluded.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62320106008 and 62373114in part by the Collaborative Innovation Center for Transportation Science and Technology of Guangzhou under Grant No.202206010056.
文摘This paper presents a learning-based control policy design for point-to-point vehicle positioning in the urban environment via BeiDou navigation.While navigating in urban canyons,the multipath effect is a kind of interference that causes the navigation signal to drift and thus imposes severe impacts on vehicle localization due to the reflection and diffraction of the BeiDou signal.Here,the authors formulated the navigation control system with unknown vehicle dynamics into an optimal control-seeking problem through a linear discrete-time system,and the point-to-point localization control is modeled and handled by leveraging off-policy reinforcement learning for feedback control.The proposed learning-based design guarantees optimality with prescribed performance and also stabilizes the closed-loop navigation system,without the full knowledge of the vehicle dynamics.It is seen that the proposed method can withstand the impact of the multipath effect while satisfying the prescribed convergence rate.A case study demonstrates that the proposed algorithms effectively drive the vehicle to a desired setpoint under the multipath effect introduced by actual experiments of BeiDou navigation in the urban environment.
基金the Fund for Foreign Scholars in University Research and Teaching Programs(the 111 Project)(No.B18039)。
文摘Low-angle estimation for very high frequency(VHF)radar is a difficult problem due to the multipath effect in the radar field,especially in complex scenarios where the reflection condition is unknown.To deal with this problem,we propose an algorithm of target height and multipath attenuation joint estimation.The amplitude of the surface reflection coefficient is estimated by the characteristic of the data itself,and it is assumed that there is no reflected signal when the amplitude is very small.The phase of the surface reflection coefficient and the phase difference between the direct and reflected signals are searched as the same part,and this represents the multipath phase attenuation.The Cramer-Rao bound of the proposed algorithm is also derived.Finally,computer simulations and real data processing results show that the proposed algorithm has good estimation performance under complex scenarios and works well with only one snapshot.
基金supported by the National Natural Science Foundation of China(Grant Nos.41574029,and 11573035)the Youth Innovation Promotion Association CAS(Grant No.2016242)。
文摘On December 27,2018,the basic system of the third-generation BeiDou navigation satellite system(BDS-3)completed the deployment of its constellation of 18 MEO networking satellites as well as the construction of the operation control system(OCS)and began to provide basic navigation services to users worldwide.Compared with BDS-2,BDS-3 aims to offer users better navigation signals and higher precision with a series of new technologies.For example,the spaceborne atomic clock of BDS-3 is upgraded for higher performance,the Ka-band inter-satellite link is adopted for inter-satellite ranging and communication,and new B1C and B2a signals are broadcast in addition to B1I and B3I signals(compatible with BDS-2).In addition,a 9-parameter model based on a spherical harmonic function is employed for ionospheric delay corrections.Using the observation data from 18 satellites of the basic system,this paper conducts a comprehensive evaluation of the pseudorange measurement characteristics,signal-in-space(SIS)accuracy of navigation messages and global service capability of BDS-3.The results indicate that the pseudorange measurement multipath effect and observation noise of BDS-3 satellites are better than those of BDS-2;additionally,with the support of inter-satellite links,the user range error(URE)of the BDS-3 satellite broadcast ephemeris is better than 10 cm,the precision of the broadcast clock parameter is better than 1.5 ns,and the SIS accuracy is better than 0.6 m overall.Different from the traditional Klobuchar model,the BeiDou global broadcast ionospheric delay correction model(BDGIM)can provide ionospheric delay corrections better than 70%for worldwide single-frequency users.The service capability evaluation of the basic system consists mainly of the accuracy improvement of the B1I and B3I signals according to BDS-2 as well as the global positioning accuracy of the new signals.These results prove that the BDS-3 basic system has achieved the design goal;that is,both the horizontal and the vertical global positioning accuracies are better than 10 m(95%).In the future,6 MEO satellites as well as 3 GEO satellites and 3 IGSO satellites for regional enhancement purposes will be deployed for full operation;consequently,BDS-3 will definitely provide a higher SIS accuracy and better service capability.
基金Acknowledgements This work is sponsored by the National Natural Science Foundation of China (Grant Nos. 61372086, 11373017, 41201380, 41171327, and 41201379), Foundation of Science and Technology Commission of Shanghai (Nos. 13511500300 and 15511101602), Open Research Funding of the Key Laboratory of Embedded System and Service Computing (No. 48505280) and Open Research Funding Program of KLGIS (No. KLGIS2014A02).
文摘The multi-antenna synchronized global navi- gation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase wind- up calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.
基金This study is supported by the National High Technology Research and Development Program of China(863 Program,No.2011AA120503).
文摘This paper introduces the design and construction of global navigation satellite systems(GNSS)vulnerability simulation,verification,and mitigation platform.The platform contains five modules:simulation of the signal-in-space environment,simulation of the vulnerabilities in the space segment,signal quality monitoring and data processing,vulnerability assessment and validation,and integrated control.It provides a set of integrated simulations of different types of interference in the GNSS signal propagation domain,including electromagnetic interference,atmospheric disturbances,multipath,and interference in the inter-satellite link.This paper focuses on the design of the main system modules and testing through an experimental analysis.The results demonstrate both the effectiveness and realism of the modules and overall platform.