AIM To observe the drug sensitizing effect andrelated mechanisms of fas gene transduction onhuman drug-resistant gastric cancer cellSGC7901/VCR(resistant to Vincristine).METHODS The cell cycle alteration wasobserved b...AIM To observe the drug sensitizing effect andrelated mechanisms of fas gene transduction onhuman drug-resistant gastric cancer cellSGC7901/VCR(resistant to Vincristine).METHODS The cell cycle alteration wasobserved by FACS.The sensitivity of gastriccancer cells to apoptosis was determined by invitro apoptosis assay.The drug sensitization ofcells to several anti-tumor drugs was observedby MTT assay.Immunochemical method wasused to show expression of P-gp and Topo Ⅱ ingastric cancer cells.RESULTS Comparing to SGC7901 and pBK-SGC7901/VCR,fas-SGC7901/VCR showeddecreasing G2 cells and increasing S cells,theG2 phase fraction of pBK-SGC7901/VCR wasabout 3.0 times that of fas-SGC7901/VCR,but Sphase fraction of fas-SGC7901/VCR was about1.9 times that of pBK-SGC7901/VCR,indicatingS phase arrest of fas-SGC7901/VCR.FACS alsosuggested apoptosis of fas-SGC7901/VCR,fas-SGC7901/VCR was more sensitive to apoptosisinducing agent VM-26 than pBK-SGC7901/VCR.MTT assay showed increased sensitization offas-SGC7901/VCR to DDP,MMC and 5-FU,butsame sensitization to VCR according to pBK-SGC7901/VCR.SGC7901,pBK-SGC7901/ VCRand fas-SGC7901/VCR had positively stainedTopo Ⅱ equally.P-gp staining in pBK- SGC7901/VCR was stronger than in SG07901,but there was little staining of P-gp in fas.SGC7901/VCR.CONCLUSION fas gene transduction couldreverse the MDR of human drug-resistant gastriccancer cell SGC7901/VCR to a degree,possiblybecause of higher sensitization to apoptosis anddecreased expression of P-gp.展开更多
Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorti...Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34+ cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.0l). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34+ cells.展开更多
Multiple drug resistance(MDR)is a tough problem in developing hepatocellular carcinoma(HCC)therapy.Here,we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin(Dox)i.e.,Bcl-2 siRNA/Dox-...Multiple drug resistance(MDR)is a tough problem in developing hepatocellular carcinoma(HCC)therapy.Here,we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin(Dox)i.e.,Bcl-2 siRNA/Dox-TPGS-LPs,to enhance anticancer effect of Dox in HCC-MDR.TPGS i.e.,d-α-tocopheryl polyethylene glycol 1000 succinate,inhibited Pglycoprotein(P-gp)efflux pump and Bcl-2 siRNA suppressed anti-apoptotic Bcl-2 protein.The Bcl-2 siRNA loaded in the liposomal corona was observed under transmission electron microscopy.The stability and hemolysis evaluation demonstrated Bcl-2 siRNA/Dox-TPGSLPs had good biocompatibility and siRNA-corona could protect the liposomal core to avoid the attachment of fetal bovine serum.In drug-resistant cells,TPGS effectively prolonged intracellular Dox retention time and siRNA-corona did improve the internalization of Dox from liposomes.In vitro and in vivo anticancer effect of this dual-functional nanostructure was examined in HCC-MDR Bel7402/5-FU tumor model.MTT assay confirmed the IC50 value of Dox was 20–50 fold higher in Bel7402/5-FU MDR cells than that in sensitive Bel7402 cells.Bcl-2 siRNA corona successfully entered the cytosol of Bel7402/5-FU MDR cells to downregulate Bcl-2 protein levels in vitro and in vivo.Bcl-2 siRNA/Dox-TPGS-LPs showed superior to TPGS-(or siRNA-)linked Dox liposomes in cell apoptosis and cytotoxicity assay in Bel7402/5-FU MDR cells,and 7-fold greater effect than free Dox in tumor growth inhibition of Bel7402/5-FU xenograft nude mice.In conclusion,TPGS-coated cationic liposomes with Bcl-2 siRNA corona had the capacity to inhibit MDR dual-pathways and subsequently improved the anti-tumor activity of the chemotherapeutic agent co-delivered to a level that cannot be achieved by inhibiting a MDR single way.展开更多
In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of ...In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of a complex coacervation technique and transfected into A2780/TS cells. The cells transfected with MDRl-targeted chitosan/pshRNA plasmid nanoparticles were experimental cells and the cells transfected with chitosan/pGPU6/GFP/Neo no-load plasmid nanoparticles served as negative control cells. Morphological features of the nanoparticles were observed under transmission electron microscope (TEM). MDR1 mRNA expression was assessed by RT-PCR. Half-inhibitory concentration (IC50) ofpaclitaxel for A2780/TS cells was determined by MTT method. TEM showed that the nanoparticles were round-shaped, smooth in surface and the diameters varied from 80 to 120 nm. The MDR1 mRNA in the transfected cells was significantly decreased by 17.6%, 27.8% and 52.6% on the post-transfection day 2, 4 and 7 when compared with that in A2780/TS cells control (P〈0.05). MTT assay revealed that the relative reversal efficiency was increased over time and was 29.6%, 51.2% and 61.3% respectively in the transfected cells 2, 4, 7 days after transfection and IC_50 (0.197±0.003, 0.144±0.001, 0.120±0.004) were decreased with difference being significant when compared with that in A2780/TS (0.269±0.003) cells control (P〈0.05). It was concluded that chitosan/pshRNA plasmid nanoparticles targeting MDR1 can effectively reverse the paclitaxel resistance in A2780/TS cells in a time-dependent manner.展开更多
The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (...The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (ESBLs)-producing E.coli and non-ESBLs-producing E.cofi to provide a reference for physicians in management of hospital infection. From October 2010 to August 2011,96 drug-resistant strains of E. coli isolated were collected from the specimens in Qingdao Municipal Hospital, Qingdao, China. These bacteria strains were divided into a ESBLs-producing group and a non-ESBLs-producing group. Drug sensitivity tests were performed using the Kirby-Bauer (K-B) method. Disinfectant gene, qacEAl-sull and 8 virulence genes (CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1) were tested by polymerase chain reaction (PCR). Among the 96 E.coli isolates, the ESBLs-producing E.coli comprised 46 (47.9%) strains and the non-ESBLs-producing E.cofi consisted of 50 (52.1%) strains. The detection rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA,VT1, est, bfpA, elt, and CNF1 in 46 ESBLs-producing E.coli isolates were 89.1%, 76.1%, 6.5%, 69.6%, 69.6%, 89.1%, 10.9%, 26.1%, 8.7%, and 19.6%, respectively. In the non-ESBLs-producing E.cofi strains, the positive rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1 were 62.0%, 80.0%, 16.0%, 28.0%, 64.0%, 38.0%, 6.0%, 34.0%, 10.0%, and 24.0%, respectively. The difference in the detection rates of multiple drug-resistant strain, hlyA and VT1 between the ESBLs-producing E.cofi strains and the non-ESBLs-producing E.cofi strains was statistically significant (P〈0.05). The positive rate of multiple drug-resistant strains is higher in the ESBLs-producing strains than in the non-ESBLs-producing strains. The expression of some virulence genes hlyA and VT1 varies between the ESBLs-producing strains and the non-ESBLs-producing strains. Increased awareness of clinicians and enhanced testing by laboratories are required to reduce treatment failures and prevent the spread of multiple drug-resistant strains.展开更多
基金National Natural Science Foundation of Chinese,No.3988007
文摘AIM To observe the drug sensitizing effect andrelated mechanisms of fas gene transduction onhuman drug-resistant gastric cancer cellSGC7901/VCR(resistant to Vincristine).METHODS The cell cycle alteration wasobserved by FACS.The sensitivity of gastriccancer cells to apoptosis was determined by invitro apoptosis assay.The drug sensitization ofcells to several anti-tumor drugs was observedby MTT assay.Immunochemical method wasused to show expression of P-gp and Topo Ⅱ ingastric cancer cells.RESULTS Comparing to SGC7901 and pBK-SGC7901/VCR,fas-SGC7901/VCR showeddecreasing G2 cells and increasing S cells,theG2 phase fraction of pBK-SGC7901/VCR wasabout 3.0 times that of fas-SGC7901/VCR,but Sphase fraction of fas-SGC7901/VCR was about1.9 times that of pBK-SGC7901/VCR,indicatingS phase arrest of fas-SGC7901/VCR.FACS alsosuggested apoptosis of fas-SGC7901/VCR,fas-SGC7901/VCR was more sensitive to apoptosisinducing agent VM-26 than pBK-SGC7901/VCR.MTT assay showed increased sensitization offas-SGC7901/VCR to DDP,MMC and 5-FU,butsame sensitization to VCR according to pBK-SGC7901/VCR.SGC7901,pBK-SGC7901/ VCRand fas-SGC7901/VCR had positively stainedTopo Ⅱ equally.P-gp staining in pBK- SGC7901/VCR was stronger than in SG07901,but there was little staining of P-gp in fas.SGC7901/VCR.CONCLUSION fas gene transduction couldreverse the MDR of human drug-resistant gastriccancer cell SGC7901/VCR to a degree,possiblybecause of higher sensitization to apoptosis anddecreased expression of P-gp.
文摘Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34+ cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.0l). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34+ cells.
基金financially supported by National Basic Research Program of China(973 Program,2015CB931802)Natural Science Foundation of China(31470968 and 81627901)。
文摘Multiple drug resistance(MDR)is a tough problem in developing hepatocellular carcinoma(HCC)therapy.Here,we developed TPGS-coated cationic liposomes with Bcl-2 siRNA corona to load doxorubicin(Dox)i.e.,Bcl-2 siRNA/Dox-TPGS-LPs,to enhance anticancer effect of Dox in HCC-MDR.TPGS i.e.,d-α-tocopheryl polyethylene glycol 1000 succinate,inhibited Pglycoprotein(P-gp)efflux pump and Bcl-2 siRNA suppressed anti-apoptotic Bcl-2 protein.The Bcl-2 siRNA loaded in the liposomal corona was observed under transmission electron microscopy.The stability and hemolysis evaluation demonstrated Bcl-2 siRNA/Dox-TPGSLPs had good biocompatibility and siRNA-corona could protect the liposomal core to avoid the attachment of fetal bovine serum.In drug-resistant cells,TPGS effectively prolonged intracellular Dox retention time and siRNA-corona did improve the internalization of Dox from liposomes.In vitro and in vivo anticancer effect of this dual-functional nanostructure was examined in HCC-MDR Bel7402/5-FU tumor model.MTT assay confirmed the IC50 value of Dox was 20–50 fold higher in Bel7402/5-FU MDR cells than that in sensitive Bel7402 cells.Bcl-2 siRNA corona successfully entered the cytosol of Bel7402/5-FU MDR cells to downregulate Bcl-2 protein levels in vitro and in vivo.Bcl-2 siRNA/Dox-TPGS-LPs showed superior to TPGS-(or siRNA-)linked Dox liposomes in cell apoptosis and cytotoxicity assay in Bel7402/5-FU MDR cells,and 7-fold greater effect than free Dox in tumor growth inhibition of Bel7402/5-FU xenograft nude mice.In conclusion,TPGS-coated cationic liposomes with Bcl-2 siRNA corona had the capacity to inhibit MDR dual-pathways and subsequently improved the anti-tumor activity of the chemotherapeutic agent co-delivered to a level that cannot be achieved by inhibiting a MDR single way.
基金supported by grants from Scientific Research Foundation of Hubei health department (No.JX2B17)a grant from Key Technologies R&D Programme of Hubei Province (No.2007AA301C20)
文摘In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of a complex coacervation technique and transfected into A2780/TS cells. The cells transfected with MDRl-targeted chitosan/pshRNA plasmid nanoparticles were experimental cells and the cells transfected with chitosan/pGPU6/GFP/Neo no-load plasmid nanoparticles served as negative control cells. Morphological features of the nanoparticles were observed under transmission electron microscope (TEM). MDR1 mRNA expression was assessed by RT-PCR. Half-inhibitory concentration (IC50) ofpaclitaxel for A2780/TS cells was determined by MTT method. TEM showed that the nanoparticles were round-shaped, smooth in surface and the diameters varied from 80 to 120 nm. The MDR1 mRNA in the transfected cells was significantly decreased by 17.6%, 27.8% and 52.6% on the post-transfection day 2, 4 and 7 when compared with that in A2780/TS cells control (P〈0.05). MTT assay revealed that the relative reversal efficiency was increased over time and was 29.6%, 51.2% and 61.3% respectively in the transfected cells 2, 4, 7 days after transfection and IC_50 (0.197±0.003, 0.144±0.001, 0.120±0.004) were decreased with difference being significant when compared with that in A2780/TS (0.269±0.003) cells control (P〈0.05). It was concluded that chitosan/pshRNA plasmid nanoparticles targeting MDR1 can effectively reverse the paclitaxel resistance in A2780/TS cells in a time-dependent manner.
文摘The virulent factors of Escherichia coil (E.cofi) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-1actamases (ESBLs)-producing E.coli and non-ESBLs-producing E.cofi to provide a reference for physicians in management of hospital infection. From October 2010 to August 2011,96 drug-resistant strains of E. coli isolated were collected from the specimens in Qingdao Municipal Hospital, Qingdao, China. These bacteria strains were divided into a ESBLs-producing group and a non-ESBLs-producing group. Drug sensitivity tests were performed using the Kirby-Bauer (K-B) method. Disinfectant gene, qacEAl-sull and 8 virulence genes (CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1) were tested by polymerase chain reaction (PCR). Among the 96 E.coli isolates, the ESBLs-producing E.coli comprised 46 (47.9%) strains and the non-ESBLs-producing E.cofi consisted of 50 (52.1%) strains. The detection rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA,VT1, est, bfpA, elt, and CNF1 in 46 ESBLs-producing E.coli isolates were 89.1%, 76.1%, 6.5%, 69.6%, 69.6%, 89.1%, 10.9%, 26.1%, 8.7%, and 19.6%, respectively. In the non-ESBLs-producing E.cofi strains, the positive rates of multiple drug-resistant strain, qacEAl-sull, CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1 were 62.0%, 80.0%, 16.0%, 28.0%, 64.0%, 38.0%, 6.0%, 34.0%, 10.0%, and 24.0%, respectively. The difference in the detection rates of multiple drug-resistant strain, hlyA and VT1 between the ESBLs-producing E.cofi strains and the non-ESBLs-producing E.cofi strains was statistically significant (P〈0.05). The positive rate of multiple drug-resistant strains is higher in the ESBLs-producing strains than in the non-ESBLs-producing strains. The expression of some virulence genes hlyA and VT1 varies between the ESBLs-producing strains and the non-ESBLs-producing strains. Increased awareness of clinicians and enhanced testing by laboratories are required to reduce treatment failures and prevent the spread of multiple drug-resistant strains.