To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometri...To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.展开更多
Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ...Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3 powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time. The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction) methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings.展开更多
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron m...The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.展开更多
The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published paper. Comparing with the paper publ...The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published paper. Comparing with the paper published in International Journal of Engineering, Science and Technology Vol. 3, No. 4, 2011, pp. 82-88 (www.ijest-ng.com), these two papers have the same contents before Figure 7 and the author added Fig. 8, 9, 10 on the 2012 paper. The scientific community takes a very strong view on this matter, and the Journal of Minerals and Materials Characterization and Engineering (JMMCE) treats all unethical behavior seriously. This paper published in Vol.11 No.5, 529-541, 2012 has been removed from this site.展开更多
This paper reports a study on nanocrystalline ceria powder prepared by high energy ball-milling and combustion synthesis methods. The combustion synthesis was carried out using ceric ammonium nitrate as oxidizer and c...This paper reports a study on nanocrystalline ceria powder prepared by high energy ball-milling and combustion synthesis methods. The combustion synthesis was carried out using ceric ammonium nitrate as oxidizer and citric acid, glycine or citric acid plus glycine as fuel. The minimum crystallite size of ceria powder is obtained by combustion synthesis of ceric ammonium nitrate and citric acid. The ceria powder produced by combustion synthesis of ceric ammonium nitrate and citric acid and glycine has less agglomeration of particles than other techniques.展开更多
High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretr...High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.展开更多
Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Ni...Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.展开更多
Mechanically activated disproportionation of Nd 12 Fe 82 B 6 alloy by ball milling in hydrogen atmosphere was experimentally investigated. The aspects of thermodynamics and kinetics for the mechanically activated disp...Mechanically activated disproportionation of Nd 12 Fe 82 B 6 alloy by ball milling in hydrogen atmosphere was experimentally investigated. The aspects of thermodynamics and kinetics for the mechanically activated disproportionation of the NdFeB alloy were discussed. Both the evolution of the disproportionation reaction and the corresponding microstructure change of the alloy during milling were characterized by X ray diffraction (XRD) analysis. The results show that the matrix phase Nd 2Fe 14 B of the as cast Nd 12 Fe 82 B 6 alloy can be disproportionated into a mixture of Nd hydride (H 5Nd 2), FeB/Fe 2B, and α Fe, by ball milling under hydrogen pressure of 0.2 MPa. The as disproportionated phases are of the size about 20 nm, suggesting that ball milling in hydrogen is an effective route for low temperature disproportionation processing of the NdFeB alloy to ensure a full nano structured as disproportionated microstructure. This is the basis for synthesizing Nd 2Fe 14 B/ α Fe nano composites with magnetic exchange coupling effect by subsequent desorption recombination processing.展开更多
The preparation of nano sized La 2O 3 powder by mechanochemical reaction of lanthanum carbonate with sodium hydroxide and subsequent heat treatment was studied using X ray diffraction, differential thermal and ther...The preparation of nano sized La 2O 3 powder by mechanochemical reaction of lanthanum carbonate with sodium hydroxide and subsequent heat treatment was studied using X ray diffraction, differential thermal and thermo gravimetric analysis and transmission electron microscopy. It was found that the mechanochemical reaction process can be divided into two steps: the first step is the multi phases mechanochemical reaction of lanthanum carbonate with NaOH to form amorphous lanthanum basic carbonate and lanthanum hydroxide, and the second step is the crystallization of basic lanthanum carbonate with the formula of La 2(OH) 2(CO 3) 2·H 2O under a quasi hydrothermal synthesis condition caused by the mechanical ball milling. The synthesized La 2O 3 powder appears clearly separated spherical like monodisperse nano size particles in which particle size ranges from 30 to 50 nm.展开更多
Cu nanoparticles were fabricated by ball milling with the anhydrous alcohol as dispersant. The size and figure of Cu nanoparticles were characterized by X-ray diffractometry and transmission electron microscopy. The t...Cu nanoparticles were fabricated by ball milling with the anhydrous alcohol as dispersant. The size and figure of Cu nanoparticles were characterized by X-ray diffractometry and transmission electron microscopy. The tribological properties of adding Cu and MoS2 nanoparticles to the pure grease were measured on MM-200 tester, compared with the single additive and pure grease. The results show the size of Cu nanoparticles is about 50 nm. The surface with lubricant added nanopowder as additive possesses a remarkable decrease in wear volume. The friction coefficient and wear volume of lubricant mixed with 5% copper and 30% disulfide molybdenum nanoparticles are 0.09 and 1.80mm3, respectively. This mixed additive can not only increase the ability of supporting heavy load but repair the microscopic channels and cracks on the wear surface. Under higher load and long period of time, this lubricant has the characteristics of self-repairing, occluding resistance and ability of enduring higher temperature.展开更多
Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high ener...Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high energy ball milling were investigated by XRD, TOPAS P software, SEM and EDS. The results show that the nano-crystalline pre-alloyed powders can be fabricated by 5 h high energy ball milling. During the MA process, the diffusion of W, Ni and Fe happens in the process of repeated welding and fracturing. As a result, nano-crystalline supersaturated solid solutions are formed. The crystallite sizes won't be refined after 10 h ball milling. The crystallite sizes of different compositions are almost the same under the same MA condition. Due to the toughening mechanism of rare earth element, the powders of 90W-4Ni-2Fe-3.8Mo-0.2RE alloy are seriously agglomerated after ball milling compared with the other alloys. It can be concluded that the optimal sintering temperature of 90W-4Ni-2Fe-3.8Mo-0.2RE pre-alloyed powders after 15 h mechanical alloying is 1 300-1 350 ℃.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51675157,51475131)State Key Laboratory of Precision Measuring Technology and Instruments of China(Grant No.PIL1401)
文摘To satisfy the measuring demands for the micro components of the industry, micro/nano probing systems with various ball tips have been developed. However, most of them cannot be used to measure the real micro geometrical features high precisely because the parameters of the ball tips are not appropriate. The ball tips with a diameter of less than 100 μm, a sphericity and eccentricity of far less than 1 μm are required urgently. A review on the state-of-the-art of ball tips of micro/nano probing systems is presented. The material characteristics and geometric parameters of now available ball tips are introduced sepa- rately. The existing fabrication methods for the ball tips are demonstrated and summarized. The ball tips' future trends, which are smaller diameter, better sphericity and smaller eccentricity, are proposed in view of the practical requirements of high-precision measurement for micro geometrical features. Some challenges have to be faced in future, such as the promotion and high-precision measurement for the small ball tip's sphericity and eccentricity. Fusion method without the gravity effect when the molten ball tip solidifying is a more suitable way to fabricate a small diameter ball tip together with a shaft.
基金the National Natural Science Foundation of China (No. 50271010).
文摘Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3 powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time. The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction) methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings.
基金This work was supported by State Key Laboratory for Powder Metallurgy of China. We are grateful to the staff of Hu'nan Yin Zhou Nonferrous Metals Hi-Tech. Ltd. Company for cemented carbides powders.
文摘The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.
文摘The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published paper. Comparing with the paper published in International Journal of Engineering, Science and Technology Vol. 3, No. 4, 2011, pp. 82-88 (www.ijest-ng.com), these two papers have the same contents before Figure 7 and the author added Fig. 8, 9, 10 on the 2012 paper. The scientific community takes a very strong view on this matter, and the Journal of Minerals and Materials Characterization and Engineering (JMMCE) treats all unethical behavior seriously. This paper published in Vol.11 No.5, 529-541, 2012 has been removed from this site.
文摘This paper reports a study on nanocrystalline ceria powder prepared by high energy ball-milling and combustion synthesis methods. The combustion synthesis was carried out using ceric ammonium nitrate as oxidizer and citric acid, glycine or citric acid plus glycine as fuel. The minimum crystallite size of ceria powder is obtained by combustion synthesis of ceric ammonium nitrate and citric acid. The ceria powder produced by combustion synthesis of ceric ammonium nitrate and citric acid and glycine has less agglomeration of particles than other techniques.
基金Funded by the Program for New Century Excellent Talents in University(No.NCET-12-0655)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)the Self-determined and Innovative Research Funds of WUT(Nos.136643002 and No.2013IV058)
文摘High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.
文摘Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.
文摘Mechanically activated disproportionation of Nd 12 Fe 82 B 6 alloy by ball milling in hydrogen atmosphere was experimentally investigated. The aspects of thermodynamics and kinetics for the mechanically activated disproportionation of the NdFeB alloy were discussed. Both the evolution of the disproportionation reaction and the corresponding microstructure change of the alloy during milling were characterized by X ray diffraction (XRD) analysis. The results show that the matrix phase Nd 2Fe 14 B of the as cast Nd 12 Fe 82 B 6 alloy can be disproportionated into a mixture of Nd hydride (H 5Nd 2), FeB/Fe 2B, and α Fe, by ball milling under hydrogen pressure of 0.2 MPa. The as disproportionated phases are of the size about 20 nm, suggesting that ball milling in hydrogen is an effective route for low temperature disproportionation processing of the NdFeB alloy to ensure a full nano structured as disproportionated microstructure. This is the basis for synthesizing Nd 2Fe 14 B/ α Fe nano composites with magnetic exchange coupling effect by subsequent desorption recombination processing.
文摘The preparation of nano sized La 2O 3 powder by mechanochemical reaction of lanthanum carbonate with sodium hydroxide and subsequent heat treatment was studied using X ray diffraction, differential thermal and thermo gravimetric analysis and transmission electron microscopy. It was found that the mechanochemical reaction process can be divided into two steps: the first step is the multi phases mechanochemical reaction of lanthanum carbonate with NaOH to form amorphous lanthanum basic carbonate and lanthanum hydroxide, and the second step is the crystallization of basic lanthanum carbonate with the formula of La 2(OH) 2(CO 3) 2·H 2O under a quasi hydrothermal synthesis condition caused by the mechanical ball milling. The synthesized La 2O 3 powder appears clearly separated spherical like monodisperse nano size particles in which particle size ranges from 30 to 50 nm.
文摘Cu nanoparticles were fabricated by ball milling with the anhydrous alcohol as dispersant. The size and figure of Cu nanoparticles were characterized by X-ray diffractometry and transmission electron microscopy. The tribological properties of adding Cu and MoS2 nanoparticles to the pure grease were measured on MM-200 tester, compared with the single additive and pure grease. The results show the size of Cu nanoparticles is about 50 nm. The surface with lubricant added nanopowder as additive possesses a remarkable decrease in wear volume. The friction coefficient and wear volume of lubricant mixed with 5% copper and 30% disulfide molybdenum nanoparticles are 0.09 and 1.80mm3, respectively. This mixed additive can not only increase the ability of supporting heavy load but repair the microscopic channels and cracks on the wear surface. Under higher load and long period of time, this lubricant has the characteristics of self-repairing, occluding resistance and ability of enduring higher temperature.
基金Project(2006259) supported by the Education Science Foundation of Jiangxi Provincial Education DepartmentProject(2007gqc1562) supported by the Natural Science Foundation of Jiangxi Province, China
文摘Nano-crystalline pre-alloyed powders of W-Ni-Fe were fabricated by high energy ball milling mechanical alloying (MA) technique. The change of appearances and the crystallite sizes of powders before and after high energy ball milling were investigated by XRD, TOPAS P software, SEM and EDS. The results show that the nano-crystalline pre-alloyed powders can be fabricated by 5 h high energy ball milling. During the MA process, the diffusion of W, Ni and Fe happens in the process of repeated welding and fracturing. As a result, nano-crystalline supersaturated solid solutions are formed. The crystallite sizes won't be refined after 10 h ball milling. The crystallite sizes of different compositions are almost the same under the same MA condition. Due to the toughening mechanism of rare earth element, the powders of 90W-4Ni-2Fe-3.8Mo-0.2RE alloy are seriously agglomerated after ball milling compared with the other alloys. It can be concluded that the optimal sintering temperature of 90W-4Ni-2Fe-3.8Mo-0.2RE pre-alloyed powders after 15 h mechanical alloying is 1 300-1 350 ℃.