We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molec...We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molecules self-assembled on the surface are found critical for locking the nanohybrids into a well-separated state. The STM results indicate that both thiol and carboxylic terminals are effective in this aspect by making strong interaction with the Au portions of the nanohybrids. An argon ion sputtering technique is also proposed to clean up organic contaminants on the surface for improved STM imaging of individual Au-CdSe nanohybrids. These observations help to enrich technical approaches to dispersing individual nanostructures on the surface and provide opportunities to explore their local electroluminescent and energy transfer properties at the nanoscale.展开更多
Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported ...Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported on factors governing tool life in machining superalloys,no study was found on the effect of nanoparticles stability on nanofluid performance and consequently resulted tool wear morphologies.In the present work,the nanoparticles were reinforced by means of improving the stability of the base fluid.To that accomplished,the surface active agent (surfactant) was added to the base cutting fluid as a reinforcing element.The effects of new lubricant on the tool wear morphology of A286 works parts were assessed.展开更多
High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging sca...High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging scarcity,valuableness,and poor electrochemical stability still hinder its wide application.Here,we designed an outstanding HER electrocatalyst,highly dispersed rhodium(Rh)nanoparticles with an average diameter of only 3 nm supported on boron(B)nanosheets.The HER catalytic activity is even comparable to that of commercial platinum catalysts,with an overpotential of only 66 mV in 0.5 M H_(2)SO_(4) and 101 mV in 1 M KOH to reach the current density of 10 mA cm−2.Meanwhile,the catalyst exhibited impressive electrochemical durability during long-term electrochemical processes in acidic and alkaline media,even the simu-lated seawater environment.Theoretical calculations unraveled that the structure-activity relationship between B(104)crystal plane and Rh(111)crystal plane is beneficial to the release of hydrogen,and surface O plays a vital role in the catalysis process.Our work may gain insights into the development of supported metal catalysts with robust catalytic performance through precise engineering of the strong metal-supported interaction effect.展开更多
Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe application of nanoparticles. In this study, dispersion and aggregation of nano-TiO2 in aqueous solutions containing vari...Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe application of nanoparticles. In this study, dispersion and aggregation of nano-TiO2 in aqueous solutions containing various anions were investigated. The influences of anion concentration and valence on the aggregation size, zeta potential and aggregation kinetics were individually investigated. Results showed that the zeta potential decreased from 19.8 to-41.4 mV when PO4^(3-) concentration was increased from 0 to 50 mg/L, while the corresponding average size of nano-TiO2 particles decreased from 613.2 to 540.3 nm. Both SO4^(2-) and NO3^-enhanced aggregation of nano-TiO2in solution. As SO4^(2-) concentration was increased from 0 to 500 mg/L, the zeta potential decreased from 19.8 to 1.4 mV, and aggregate sizes increased from 613.2 to 961.3 nm.The trend for NO3^- fluctuation was similar to that for SO4^(2-) although the range of variation for NO3^- was relatively narrow. SO4^(2-) and NO3^-accelerated the aggregation rapidly, while PO4^(3-) did so slowly. These findings facilitate the understanding of aggregation and dispersion mechanisms of nano-TiO2 in aqueous solutions in the presence of anions of interest.展开更多
Ag-MgF_2 composite films with different Ag fractions were prepared through a co-evaporation method. Microstructure analysis shows that the films are composed of amorphous MgF_2 matrix and embedded fcc-Ag nanoparticles...Ag-MgF_2 composite films with different Ag fractions were prepared through a co-evaporation method. Microstructure analysis shows that the films are composed of amorphous MgF_2 matrix and embedded fcc-Ag nanoparticles. The optical constants and their dispersion of the films, within the wavelength range of 250 - 650 nm, were measured by reflecting spectroscopic ellipsometry. The maximum of the imaginary part ε~″ of the complex dielectric permittivity attributing to the surface plasmon resonance polarization of the Ag nanoparticles in an Ag-MgF_2 film, and the tangent of the phase-shift angle δ resulting from the dielectric loss of the film, occur at λ= 435 nm and λ= 420 nm, respectively. Based on Maxwell-Garnett effective medium theory, the experimentally observed dispersion spectra were reasonably described.展开更多
Generally, nanoparticles are easy to aggregate due to their nano sizes, which influence the physical and chemical properties. In this work, a dispersion treatment of the TiO2 nanoparticles with different average sizes...Generally, nanoparticles are easy to aggregate due to their nano sizes, which influence the physical and chemical properties. In this work, a dispersion treatment of the TiO2 nanoparticles with different average sizes was employed to improve the disper- sion of TiO2 nanoparticles, in order to prepare flexible photoanodes for dye-sensitized solar cells (DSCs) with novel photovol- talc properties at a low temperature. The effects of dispersion treatment on the dispersion of TiO2 nanoparticles, including the viscosities of the binder-free TiO2 paste, the morphologies and textural properties of nanoparticle-TiO2 films, and the photo- voltaic properties of the flexible DSCs, were investigated. Flexible indium-tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrates with sputter deposited Pt were employed as the transparent flexible counter electrodes. A short-circuit photo- current density of 9.62 mA·cm^-2, an open-circuit voltage of 0.757 V, a fill factor of 0.589 and an overall light-to-energy con- version efficiency of 4.29% for the flexible DSCs under AM1.5 illumination of 100 mW·cm^-2 were obtained with dispersion treatment. A 30.8% increment of the energy conversion efficiency for DSCs made by dispersion treatment was obtained com- pared with that made without dispersion treatment.展开更多
Well-dispersed BaSO4 nanoparticles were synthesized in the presence of sodium polyacrylate (PAAS) by a simple precipitation method, with BaCl2 and (NH4)2SO4 as reactants. The different roles performed by PAAS in t...Well-dispersed BaSO4 nanoparticles were synthesized in the presence of sodium polyacrylate (PAAS) by a simple precipitation method, with BaCl2 and (NH4)2SO4 as reactants. The different roles performed by PAAS in the synthesis of BaSO4 nanoparticles were investigated using X-ray diffractometry, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicate that the assynthesized BaSO4 nanoparticles were spheres with an average diameter of 30 nm and that their surfaces were affected by the PAAS. Under a typical procedure employed, PAAS reacted with BaCl2 to yield an intermediate, serving as a control releasing agent and separating the nucleation and crystal growth processes of the BaSO4 nuclei. During formation of the BaSO4 nanospheres, the intermediate slowly dissolved and released barium and polyacrylate ions, inhibiting the growth and aggregation of newly formed BaSO4 seeds and resulting in particles of narrow diameter distribution and improved dispersibility. Moreover, these polyacrylate ions further modified the surfaces of the BaSO4 nanoparticles.展开更多
Using the ionic liquid(IL)1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent,a dispersive liquid–liquid microextraction method was developed to extract silver n...Using the ionic liquid(IL)1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent,a dispersive liquid–liquid microextraction method was developed to extract silver nanoparticles(AgN Ps)from environmental water samples.Parameters that influenced the extraction efficiency such as IL concentration,pH and extraction time were optimized.Under the optimized conditions,the highest extraction efficiency for AgN Ps was above 90% with an enrichment factor of 〉90.The extracted AgN Ps in the IL phase were identified by transmission electron microscopy and ultraviolet–visible spectroscopy,and quantified by inductively coupled plasma mass spectrometry after microwave digestion,with a detection limit of 0.01 μg/L.The spiked recovery of AgN Ps was 84.4% with a relative standard deviation(RSD)of 3.8%(n = 6)at a spiked level of 5 μg/L,and 89.7% with a RSD of 2.2%(n = 6)at a spiked level of 300 μg/L,respectively.Commonly existed environmental ions had a very limited influence on the extraction efficiency.The developed method was successfully applied to the analysis of Ag NPs in river water,lake water,and the influent and effluent of a wastewater treatment plant,with recoveries in the range of 71.0%–90.9% at spiking levels of 0.11–4.7 μg/L.展开更多
Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable th...Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable than physical,chemical,and mechanical methods.The wet biomass of Aspergillus terreus(A.terreus) was utilized for the intracellular synthesis of gold nanoparticles.Gold nanoparticles were produced when an aqueous solution of chloroauric acid was reduced by A.terreus biomass as the reducing agent.Production of gold nanoparticles was confirmed by the color change of biomass from yellow to pinkish violet.The produced nanoparticles were then characterized by FT-IR,SEM,EDS,and XRD.The SEM images revealed that the nanoparticles were spherical,irregularly shaped with no definite morphology.Average size of the biosynthesized gold nanoparticles was 186 nm.The presence of the gold nanoparticle was confirmed by EDS analysis.Crystalline nature of synthesized gold nanoparticle was confirmed by XRD pattern.展开更多
文摘We report the dispersion and scanning tunneling microscopy (STM) characterization of iso- lated Au-CdSe nanohybrids on atomically fiat Au(111) through surface modifications. The top terminal groups of spacer molecules self-assembled on the surface are found critical for locking the nanohybrids into a well-separated state. The STM results indicate that both thiol and carboxylic terminals are effective in this aspect by making strong interaction with the Au portions of the nanohybrids. An argon ion sputtering technique is also proposed to clean up organic contaminants on the surface for improved STM imaging of individual Au-CdSe nanohybrids. These observations help to enrich technical approaches to dispersing individual nanostructures on the surface and provide opportunities to explore their local electroluminescent and energy transfer properties at the nanoscale.
文摘Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported on factors governing tool life in machining superalloys,no study was found on the effect of nanoparticles stability on nanofluid performance and consequently resulted tool wear morphologies.In the present work,the nanoparticles were reinforced by means of improving the stability of the base fluid.To that accomplished,the surface active agent (surfactant) was added to the base cutting fluid as a reinforcing element.The effects of new lubricant on the tool wear morphology of A286 works parts were assessed.
基金project was funded by National Natural Science Foundation of China(Nos.21901154,21671129)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT17R71)。
文摘High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging scarcity,valuableness,and poor electrochemical stability still hinder its wide application.Here,we designed an outstanding HER electrocatalyst,highly dispersed rhodium(Rh)nanoparticles with an average diameter of only 3 nm supported on boron(B)nanosheets.The HER catalytic activity is even comparable to that of commercial platinum catalysts,with an overpotential of only 66 mV in 0.5 M H_(2)SO_(4) and 101 mV in 1 M KOH to reach the current density of 10 mA cm−2.Meanwhile,the catalyst exhibited impressive electrochemical durability during long-term electrochemical processes in acidic and alkaline media,even the simu-lated seawater environment.Theoretical calculations unraveled that the structure-activity relationship between B(104)crystal plane and Rh(111)crystal plane is beneficial to the release of hydrogen,and surface O plays a vital role in the catalysis process.Our work may gain insights into the development of supported metal catalysts with robust catalytic performance through precise engineering of the strong metal-supported interaction effect.
基金supported by the International S&T Cooperation Program of China(No.2015DFG92750)the National Natural Science Foundation of China(No.51478172)the Department of Science and Technology of Hunan Province(No.2014GK1012)
文摘Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe application of nanoparticles. In this study, dispersion and aggregation of nano-TiO2 in aqueous solutions containing various anions were investigated. The influences of anion concentration and valence on the aggregation size, zeta potential and aggregation kinetics were individually investigated. Results showed that the zeta potential decreased from 19.8 to-41.4 mV when PO4^(3-) concentration was increased from 0 to 50 mg/L, while the corresponding average size of nano-TiO2 particles decreased from 613.2 to 540.3 nm. Both SO4^(2-) and NO3^-enhanced aggregation of nano-TiO2in solution. As SO4^(2-) concentration was increased from 0 to 500 mg/L, the zeta potential decreased from 19.8 to 1.4 mV, and aggregate sizes increased from 613.2 to 961.3 nm.The trend for NO3^- fluctuation was similar to that for SO4^(2-) although the range of variation for NO3^- was relatively narrow. SO4^(2-) and NO3^-accelerated the aggregation rapidly, while PO4^(3-) did so slowly. These findings facilitate the understanding of aggregation and dispersion mechanisms of nano-TiO2 in aqueous solutions in the presence of anions of interest.
基金This work was supported by the National Natural Science Foundation of China (No. 59972001)the Natural Science Foundation of Anhui Province (No. 01044901)the Talent Foundation of Anhui University.
文摘Ag-MgF_2 composite films with different Ag fractions were prepared through a co-evaporation method. Microstructure analysis shows that the films are composed of amorphous MgF_2 matrix and embedded fcc-Ag nanoparticles. The optical constants and their dispersion of the films, within the wavelength range of 250 - 650 nm, were measured by reflecting spectroscopic ellipsometry. The maximum of the imaginary part ε~″ of the complex dielectric permittivity attributing to the surface plasmon resonance polarization of the Ag nanoparticles in an Ag-MgF_2 film, and the tangent of the phase-shift angle δ resulting from the dielectric loss of the film, occur at λ= 435 nm and λ= 420 nm, respectively. Based on Maxwell-Garnett effective medium theory, the experimentally observed dispersion spectra were reasonably described.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2011AA-050522)Sanjiang-yuan Scientific Program of Qinghai Science & Technology Department(Grant No. 2010-N-S03)the Ministry of Science & Technology (MOST) International S&T Cooperation Program of China (Grant No. 2010DFA-64360)
文摘Generally, nanoparticles are easy to aggregate due to their nano sizes, which influence the physical and chemical properties. In this work, a dispersion treatment of the TiO2 nanoparticles with different average sizes was employed to improve the disper- sion of TiO2 nanoparticles, in order to prepare flexible photoanodes for dye-sensitized solar cells (DSCs) with novel photovol- talc properties at a low temperature. The effects of dispersion treatment on the dispersion of TiO2 nanoparticles, including the viscosities of the binder-free TiO2 paste, the morphologies and textural properties of nanoparticle-TiO2 films, and the photo- voltaic properties of the flexible DSCs, were investigated. Flexible indium-tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrates with sputter deposited Pt were employed as the transparent flexible counter electrodes. A short-circuit photo- current density of 9.62 mA·cm^-2, an open-circuit voltage of 0.757 V, a fill factor of 0.589 and an overall light-to-energy con- version efficiency of 4.29% for the flexible DSCs under AM1.5 illumination of 100 mW·cm^-2 were obtained with dispersion treatment. A 30.8% increment of the energy conversion efficiency for DSCs made by dispersion treatment was obtained com- pared with that made without dispersion treatment.
基金supported by the National Natural Science Foundation of China(51172117)the Shandong Natural Science Foundation(ZR2010EM035)the Qingdao Science and Technology Project(10-3-4-4-12-jch)
文摘Well-dispersed BaSO4 nanoparticles were synthesized in the presence of sodium polyacrylate (PAAS) by a simple precipitation method, with BaCl2 and (NH4)2SO4 as reactants. The different roles performed by PAAS in the synthesis of BaSO4 nanoparticles were investigated using X-ray diffractometry, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicate that the assynthesized BaSO4 nanoparticles were spheres with an average diameter of 30 nm and that their surfaces were affected by the PAAS. Under a typical procedure employed, PAAS reacted with BaCl2 to yield an intermediate, serving as a control releasing agent and separating the nucleation and crystal growth processes of the BaSO4 nuclei. During formation of the BaSO4 nanospheres, the intermediate slowly dissolved and released barium and polyacrylate ions, inhibiting the growth and aggregation of newly formed BaSO4 seeds and resulting in particles of narrow diameter distribution and improved dispersibility. Moreover, these polyacrylate ions further modified the surfaces of the BaSO4 nanoparticles.
基金supported by the National Natural Science Foundation of China(No.21207124)Research Project of Beijing Municipal Education Commission(No.KM201110005009)the Special Fund for Quality Inspection Administration Public Welfare Scientific Research Funding(No.2012104001)
文摘Using the ionic liquid(IL)1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent,a dispersive liquid–liquid microextraction method was developed to extract silver nanoparticles(AgN Ps)from environmental water samples.Parameters that influenced the extraction efficiency such as IL concentration,pH and extraction time were optimized.Under the optimized conditions,the highest extraction efficiency for AgN Ps was above 90% with an enrichment factor of 〉90.The extracted AgN Ps in the IL phase were identified by transmission electron microscopy and ultraviolet–visible spectroscopy,and quantified by inductively coupled plasma mass spectrometry after microwave digestion,with a detection limit of 0.01 μg/L.The spiked recovery of AgN Ps was 84.4% with a relative standard deviation(RSD)of 3.8%(n = 6)at a spiked level of 5 μg/L,and 89.7% with a RSD of 2.2%(n = 6)at a spiked level of 300 μg/L,respectively.Commonly existed environmental ions had a very limited influence on the extraction efficiency.The developed method was successfully applied to the analysis of Ag NPs in river water,lake water,and the influent and effluent of a wastewater treatment plant,with recoveries in the range of 71.0%–90.9% at spiking levels of 0.11–4.7 μg/L.
文摘Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable than physical,chemical,and mechanical methods.The wet biomass of Aspergillus terreus(A.terreus) was utilized for the intracellular synthesis of gold nanoparticles.Gold nanoparticles were produced when an aqueous solution of chloroauric acid was reduced by A.terreus biomass as the reducing agent.Production of gold nanoparticles was confirmed by the color change of biomass from yellow to pinkish violet.The produced nanoparticles were then characterized by FT-IR,SEM,EDS,and XRD.The SEM images revealed that the nanoparticles were spherical,irregularly shaped with no definite morphology.Average size of the biosynthesized gold nanoparticles was 186 nm.The presence of the gold nanoparticle was confirmed by EDS analysis.Crystalline nature of synthesized gold nanoparticle was confirmed by XRD pattern.