The pores in shales are mainly of nanometer-scale, and their pore size distribution is very important for the preservation and exploitation of shale gas. This study focused on the organic-rich Lower Silurian black sha...The pores in shales are mainly of nanometer-scale, and their pore size distribution is very important for the preservation and exploitation of shale gas. This study focused on the organic-rich Lower Silurian black shale from four wells in the Upper Yangtze Platform, and their TOC, mineralogical composition and pore characterization were investigated. Low pressure N2 and CO2 adsorption were conducted at 77.35 K and 273.15 K, respectively, and the pore structures were characterized by modified Brunauer-Emmett-Teller (BET), Dubinin-Radushkevich (DR), t-plot, Barrett- Joyner-Halenda (BJH) and density functional theory (DFT) methods and then the relationship between pore structure and shale gas sorption capacity was discussed. The results indicate that (1) The Lower Silurian shale has high TOC content of 0.92%~96%, high quartz content of 30.6%-69.5%, and high clays content of 24.1%-51.2%. The total specific surface area varies from 7.56 m^2/g to 25.86 m^2/g. Both the total specific surface area and quartz content are positively associated with the TOC content. (2) Shale samples with higher TOC content have more micropores, which results in more complex nanopore structure. Micropore volumes/surface areas and non-micropore surface areas all increase with the increasing TOC content. (3) A combination of N2 and CO2 adsorption provides the most suitable detection range (~0.3-60 nm) and has high reliability and accuracy for nanopore structure characterization. (4) The TOC content is the key factor to control the gas sorption capacity of the Lower Silurian shale in the Upper Yangtze Platform.展开更多
The evolution of nanoporous structure with dealloying condition was investigated, thus, the mechanism of porous structure evolution was uncovered. The Gasar Cu-Mn alloy was dealloyed by room and elevated temperature c...The evolution of nanoporous structure with dealloying condition was investigated, thus, the mechanism of porous structure evolution was uncovered. The Gasar Cu-Mn alloy was dealloyed by room and elevated temperature chemical corrosion, low and high current level electrochemical corrosion, four types of porous structures, including uneven corrosion pits, hybrid porous, haystack type and bicontinuous model were prepared by chemically and electrochemically dealloying the porous Cu-34.6%Mn alloy made by the Gasar process. Then, the surface diffusion coefficient(DS) and the diffusion frequency(kD) of Cu atom, as well as the dissolution frequency(kE) of Mn atom were calculated with dealloying condition. The dealloyed morphologies for room temperature chemical corrosion and low current level electrochemical corrosion were similar due to the same DS. While the dealloyed structures changed from bulk hybrid porous structure to bicontinuous porous film with decreasing kD/kE.展开更多
Duplex nanoporous Cu was successfully fabricated by dealloying a dual-phase Mg-Cu precursor alloy consisting of intermetallic Mg2Cu and MgCu2.The duplex nanoporous Cu with embedded nanoporous struts exhibited highly e...Duplex nanoporous Cu was successfully fabricated by dealloying a dual-phase Mg-Cu precursor alloy consisting of intermetallic Mg2Cu and MgCu2.The duplex nanoporous Cu with embedded nanoporous struts exhibited highly enhanced strength compared to the typical monolithic nanoporous Cu under both compressive and flexural test conditions at room temperature;the duplex np-Cu sample exhibited a 12 times higher compressive strength and a 40 times greater flexural strength than the monolithic np-Cu sample.Factors responsible for the strength enhancement in the duplex nanoporous Cu are discussed.展开更多
Dealloyed ribbons with a layer of networked nanoporous structure of different pore sizes were fabricated by dealloying the as-spun Mg_(65)Cu_(25-x)Ag_(x)Y_(10)(x=0,5,10,at.%)ribbons in dilute H_(2)SO_(4) solution in o...Dealloyed ribbons with a layer of networked nanoporous structure of different pore sizes were fabricated by dealloying the as-spun Mg_(65)Cu_(25-x)Ag_(x)Y_(10)(x=0,5,10,at.%)ribbons in dilute H_(2)SO_(4) solution in order to enhance the degradation efficiency of pesticide wastewater.Compared to the as-spun ribbons,it is found that the dealloyed ribbons with the networked nanoporous structure exhibit higher degradation efficiency due to their large specific surface areas and enough active sites for the degradation process.Both the average pore sizes of the nanoporous structure and the degradation efficiency of the pesticide wastewater increase with the increase of Ag addition in the dealloyed ribbons.The maximum degradation efficiency up to 95.8%is obtained for the Mg_(65)Cu_(15)Ag_(10)Y_(10)dealloyed ribbon under the optimal conditions of pH being 3,the initial cis-cypermethrin concentration being 500 mg/L,and the dosage of dealloyed ribbon being 1.33 g/L.展开更多
The acoustic performance for the nanoporous frustule of the diatom is studied based on the computational fluid dynamics theory and acoustic theory involved.Representative Coscinodiscus sp.frustule is observed through ...The acoustic performance for the nanoporous frustule of the diatom is studied based on the computational fluid dynamics theory and acoustic theory involved.Representative Coscinodiscus sp.frustule is observed through the scanning electron microscope and modeled by the commercial software Solidworks.Further,the acoustic performance for the Coscinodiscus sp.frustule is studied at the varied depth,diameter or interval of the pore,as well as the film thickness of the fluid surrounding the Coscinodiscus sp.frustule.The numerical results show that,when the upper and lower pore diameters are separately 200 and 300 nm,the upper and lower pore depths are separately 200 and 250 nm,and both the pore interval and fluid film thickness are 500 nm,the elaborate nanoporous structure of Coscinodiscus sp.frustule can lower its acoustic power level by 17.49%,compared with that without porous structure.Meanwhile,the double-layer pore of Coscinodiscus sp.frustule can decrease its acoustic power level by 12.69%,compared with its single-layer pore structures.展开更多
Hydrogen evolution reaction(HER)in neutral medium suffers from slow kinetics as compared to that in alkaline or acidic conditions,owing to larger Ohmic loss and low proton concentration.Here we report that a self-supp...Hydrogen evolution reaction(HER)in neutral medium suffers from slow kinetics as compared to that in alkaline or acidic conditions,owing to larger Ohmic loss and low proton concentration.Here we report that a self-supported nanoporous Au-SnO_(x)(NP Au-SnO_(x))catalyst with gradient tin oxide surface could significantly enhance HER activity in neutral buffer solution(0.2 M PBS).The NP Au-SnO_(x)catalyst exhibits a low onset overpotential of 38 mV and a small Tafel slope of 79 mV dec^(−1).The current density of 10 mA cm^(−2)is manifested at an overpotential as low as 148 mV,representing the comparable performance of Pt/C catalyst.This high catalytic activity can retain at least 10 hours without any detectable decay.The superior HER activity is proposed to originate from the gradient SnO_(x)structure and metal/oxide interfaces in nanoporous ligaments.Furthermore,the X-ray photoelectron spectroscopy reveals that the gradient oxide in the ligament is remarkably stable during long-term reaction.展开更多
Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we re...Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we report fabrication of a unique hierarchically porous structure,i.e.,nanoporous Ni(NPN)/metallic glass(MG)composite,through surface dealloying of the specially designed Ni_(40)Zr_(40)Ti_(20)MG wire.This porous composite is composed of micrometer slits staggered with nanometer pores,which not only enlarges effective surface areas for the catalytic reaction,but also facilitates the release of H2 gas.As a result,the NPN/MG hybrid electrode exhibited the prominent HER performance with a low overpotential of 78 m V at 10 m A cm^(-2)and Tafel slope of 42.4 m V dec^(-1),along with outstanding stability in alkaline solutions.Outstanding catalytic properties,combining with their free-standing capability and cost efficiency,make the current composite electrode viable for HER applications.展开更多
Nanoporous metals have received significant attention as a new class of structural and functional materials.However,the macroscopic brittle fracture under the tensile test is an impediment to their practical applicati...Nanoporous metals have received significant attention as a new class of structural and functional materials.However,the macroscopic brittle fracture under the tensile test is an impediment to their practical applications.Thus,it is of central importance to develop nanoporous materials with low cost and high tensile ductility.Herein,a nanoporous Cu film supported on a pure Cu substrate(NPC@Cu)was fabricated by utilizing a liquid Ga assisted alloying-dealloying strategy,and the thickness of NPC film can be precisely regulated by changing the mass loading of liquid Ga.In-situ X-ray diffraction was performed to further explore the alloying/dealloying mechanisms.The NPC@Cu films show good tensile mechanical properties with a minimum elongation of 13.5%,which can be attributed to the good interface bonding and certain modulus matching between the nanoporous Cu layer and the Cu substrate.Our findings demonstrate that the design of film-substrate structure provides a feasible strategy for enhancing the mechanical properties of nanoporous metals.展开更多
The identification of stratigraphic'sweet-spot'interval is significant in oil and gas formation evaluation.However,formation evaluation in macroscopic-scale merely provides low resolution and limited infor-mat...The identification of stratigraphic'sweet-spot'interval is significant in oil and gas formation evaluation.However,formation evaluation in macroscopic-scale merely provides low resolution and limited infor-mation,thus may lead to uncertainties in resource estimation.To accurately identify the'sweet-spot'intervals amongst heterogeneous lithofacies,we conducted a very high-resolution and quantitative analysis from in-situ macroscopic scale to laboratory microscopic scale on the Goldwyer formation of Canning Basin,Western Australia.The comprehensive advanced well logging and slim-compact micro imager(SCMI)technologies were synthetically applied in couple with the laboratory nanoscaled ex-periments.The results unveiled an extraordinarily large lithofacies heterogeneity between different rock intervals,with distinguished features shown in Goldwyer Ⅰ,Ⅱ,and Ⅲ members.The most favorable lithofacies is recognized as the laminated argillaceous thermally-matured organic matter(OM)-rich mudstone,which is widely developed in Goldwyer Ⅲ as the major attributor to'sweet-spot'intervals.Goldwyer Ⅱ is exclusively characterized by thick mudstone intervals(94.4%),interbedded with thin calcareous mudstones(5.5%),corresponding to a depositional environment of low-energy distal section of the outer ramp settings.Microscopically,the most favorable lithofacies in'sweet-spot'intervals develop numerous OM-/mineral nanopores for hydrocarbon storage.Illite-rich lithofacies develops abundant inter-particle pores from 2 to 17 nm that mainly contribute to pore volume for free gas storage capacity.OM-rich lithofacies with higher maturity have OM-pores with good connectivity,bearing large specific surface area that is beneficial for adsorbed gas capacity.展开更多
基于商用铸造Mg-Si合金,采用化学腐蚀和碳包覆技术相结合,制备出纳米多孔硅/碳复合负极。通过SEM、XRD和EDS技术表征了该负极的物相构成、化学成分和微观结构,并对其电化学性能进行了研究。结果表明,该负极具有典型的三维双连通纳米多...基于商用铸造Mg-Si合金,采用化学腐蚀和碳包覆技术相结合,制备出纳米多孔硅/碳复合负极。通过SEM、XRD和EDS技术表征了该负极的物相构成、化学成分和微观结构,并对其电化学性能进行了研究。结果表明,该负极具有典型的三维双连通纳米多孔结构,且碳层均匀包覆在多孔硅表面。0.1 C电流密度下,该负极首次充/放电比容量为724.44/1404.49 m A·h/g,循环寿命800次以上,且在-30~50℃的温度范围内可正常使用。展开更多
The nanopore structures in precursors Four carbon-fiber precursors are prepared. They are crucial to the performance of PAN-based carbon fibers are bath-fed filaments (A), water-washing filaments (B) hot-stretchin...The nanopore structures in precursors Four carbon-fiber precursors are prepared. They are crucial to the performance of PAN-based carbon fibers are bath-fed filaments (A), water-washing filaments (B) hot-stretching filaments (C) and drying-densification filaments (D). Synchrotron radiation small angle X-ray scattering is used to probe and compare the nanopore structures of the four fibers. The nanopore size, discrete volume distribution, nanopore orientation degree along the fiber axis and the porosity are obtained. The results demonstrate that the nanopores are mainly formed in the water-washing stage. During the processes of the subsequent production technologies, the slenderness ratio of nanopores and their orientation degree along the fiber axis increase further and simultaneously, the porosity decreases. These results are helpful for improving the performance of the final carbon fibers.展开更多
基金the financial support of the National Science and Technology Major Project(No.2016ZX05034-001)National Natural Science Foundation of China(No.41472112)
文摘The pores in shales are mainly of nanometer-scale, and their pore size distribution is very important for the preservation and exploitation of shale gas. This study focused on the organic-rich Lower Silurian black shale from four wells in the Upper Yangtze Platform, and their TOC, mineralogical composition and pore characterization were investigated. Low pressure N2 and CO2 adsorption were conducted at 77.35 K and 273.15 K, respectively, and the pore structures were characterized by modified Brunauer-Emmett-Teller (BET), Dubinin-Radushkevich (DR), t-plot, Barrett- Joyner-Halenda (BJH) and density functional theory (DFT) methods and then the relationship between pore structure and shale gas sorption capacity was discussed. The results indicate that (1) The Lower Silurian shale has high TOC content of 0.92%~96%, high quartz content of 30.6%-69.5%, and high clays content of 24.1%-51.2%. The total specific surface area varies from 7.56 m^2/g to 25.86 m^2/g. Both the total specific surface area and quartz content are positively associated with the TOC content. (2) Shale samples with higher TOC content have more micropores, which results in more complex nanopore structure. Micropore volumes/surface areas and non-micropore surface areas all increase with the increasing TOC content. (3) A combination of N2 and CO2 adsorption provides the most suitable detection range (~0.3-60 nm) and has high reliability and accuracy for nanopore structure characterization. (4) The TOC content is the key factor to control the gas sorption capacity of the Lower Silurian shale in the Upper Yangtze Platform.
基金Project(51371104)supported by the National Natural Science Foundation of China
文摘The evolution of nanoporous structure with dealloying condition was investigated, thus, the mechanism of porous structure evolution was uncovered. The Gasar Cu-Mn alloy was dealloyed by room and elevated temperature chemical corrosion, low and high current level electrochemical corrosion, four types of porous structures, including uneven corrosion pits, hybrid porous, haystack type and bicontinuous model were prepared by chemically and electrochemically dealloying the porous Cu-34.6%Mn alloy made by the Gasar process. Then, the surface diffusion coefficient(DS) and the diffusion frequency(kD) of Cu atom, as well as the dissolution frequency(kE) of Mn atom were calculated with dealloying condition. The dealloyed morphologies for room temperature chemical corrosion and low current level electrochemical corrosion were similar due to the same DS. While the dealloyed structures changed from bulk hybrid porous structure to bicontinuous porous film with decreasing kD/kE.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2019R1A2C1003905).
文摘Duplex nanoporous Cu was successfully fabricated by dealloying a dual-phase Mg-Cu precursor alloy consisting of intermetallic Mg2Cu and MgCu2.The duplex nanoporous Cu with embedded nanoporous struts exhibited highly enhanced strength compared to the typical monolithic nanoporous Cu under both compressive and flexural test conditions at room temperature;the duplex np-Cu sample exhibited a 12 times higher compressive strength and a 40 times greater flexural strength than the monolithic np-Cu sample.Factors responsible for the strength enhancement in the duplex nanoporous Cu are discussed.
基金the financial supports from State Key Laboratory of Light Alloy Casting Technology for High-end Equipmentthe Natural Science Foundation of Liaoning Province,China(No.2020-KF-14-03)the National Natural Science Foundation of China(No.51775353)。
文摘Dealloyed ribbons with a layer of networked nanoporous structure of different pore sizes were fabricated by dealloying the as-spun Mg_(65)Cu_(25-x)Ag_(x)Y_(10)(x=0,5,10,at.%)ribbons in dilute H_(2)SO_(4) solution in order to enhance the degradation efficiency of pesticide wastewater.Compared to the as-spun ribbons,it is found that the dealloyed ribbons with the networked nanoporous structure exhibit higher degradation efficiency due to their large specific surface areas and enough active sites for the degradation process.Both the average pore sizes of the nanoporous structure and the degradation efficiency of the pesticide wastewater increase with the increase of Ag addition in the dealloyed ribbons.The maximum degradation efficiency up to 95.8%is obtained for the Mg_(65)Cu_(15)Ag_(10)Y_(10)dealloyed ribbon under the optimal conditions of pH being 3,the initial cis-cypermethrin concentration being 500 mg/L,and the dosage of dealloyed ribbon being 1.33 g/L.
基金supported by the National Natural Science Foundation of China (no.52175160).
文摘The acoustic performance for the nanoporous frustule of the diatom is studied based on the computational fluid dynamics theory and acoustic theory involved.Representative Coscinodiscus sp.frustule is observed through the scanning electron microscope and modeled by the commercial software Solidworks.Further,the acoustic performance for the Coscinodiscus sp.frustule is studied at the varied depth,diameter or interval of the pore,as well as the film thickness of the fluid surrounding the Coscinodiscus sp.frustule.The numerical results show that,when the upper and lower pore diameters are separately 200 and 300 nm,the upper and lower pore depths are separately 200 and 250 nm,and both the pore interval and fluid film thickness are 500 nm,the elaborate nanoporous structure of Coscinodiscus sp.frustule can lower its acoustic power level by 17.49%,compared with that without porous structure.Meanwhile,the double-layer pore of Coscinodiscus sp.frustule can decrease its acoustic power level by 12.69%,compared with its single-layer pore structures.
基金financial support from the National Natural Science Foundation of China(51771078,91545131 and 51371084)China Postdoctoral Science Foundation(No.2017M612455).
文摘Hydrogen evolution reaction(HER)in neutral medium suffers from slow kinetics as compared to that in alkaline or acidic conditions,owing to larger Ohmic loss and low proton concentration.Here we report that a self-supported nanoporous Au-SnO_(x)(NP Au-SnO_(x))catalyst with gradient tin oxide surface could significantly enhance HER activity in neutral buffer solution(0.2 M PBS).The NP Au-SnO_(x)catalyst exhibits a low onset overpotential of 38 mV and a small Tafel slope of 79 mV dec^(−1).The current density of 10 mA cm^(−2)is manifested at an overpotential as low as 148 mV,representing the comparable performance of Pt/C catalyst.This high catalytic activity can retain at least 10 hours without any detectable decay.The superior HER activity is proposed to originate from the gradient SnO_(x)structure and metal/oxide interfaces in nanoporous ligaments.Furthermore,the X-ray photoelectron spectroscopy reveals that the gradient oxide in the ligament is remarkably stable during long-term reaction.
基金supported by National Natural Science Foundation of China(Nos.11790293,51871016,51671018,51671021,and 51961160729)the Funds for Creative Research Groups of China(No.51921001)+3 种基金111 Project(B07003)the Program for Changjiang Scholars and Innovative Research Team in University of China(IRT 14R05)the Fundamental Research Funds for the Central Universities(Nos.FRF-GF-19-011A,FRF-TP-18-004C1,FRF-BD-19-002B,and FRF-TP19-054A2)partially supported by State Key Laboratory for Advanced Metals and Materials(2018Z-19)。
文摘Searching for free-standing and cost-efficient hydrogen evolution reaction(HER)electrocatalysts with high efficiency and excellent durability remains a great challenge for the hydrogen-based energy industry.Here,we report fabrication of a unique hierarchically porous structure,i.e.,nanoporous Ni(NPN)/metallic glass(MG)composite,through surface dealloying of the specially designed Ni_(40)Zr_(40)Ti_(20)MG wire.This porous composite is composed of micrometer slits staggered with nanometer pores,which not only enlarges effective surface areas for the catalytic reaction,but also facilitates the release of H2 gas.As a result,the NPN/MG hybrid electrode exhibited the prominent HER performance with a low overpotential of 78 m V at 10 m A cm^(-2)and Tafel slope of 42.4 m V dec^(-1),along with outstanding stability in alkaline solutions.Outstanding catalytic properties,combining with their free-standing capability and cost efficiency,make the current composite electrode viable for HER applications.
基金supported by the National Natural Science Foundation of China(Grant No.51871133)the Taishan Scholar Foundation of Shandong Province,the Program of Jinan Science and Technology Bureau(Grant No.2019GXRC001)the Major Projects of Guangdong Education Department for Foundation Research and Applied Research,China(Grant No.2019KZDXM065).
文摘Nanoporous metals have received significant attention as a new class of structural and functional materials.However,the macroscopic brittle fracture under the tensile test is an impediment to their practical applications.Thus,it is of central importance to develop nanoporous materials with low cost and high tensile ductility.Herein,a nanoporous Cu film supported on a pure Cu substrate(NPC@Cu)was fabricated by utilizing a liquid Ga assisted alloying-dealloying strategy,and the thickness of NPC film can be precisely regulated by changing the mass loading of liquid Ga.In-situ X-ray diffraction was performed to further explore the alloying/dealloying mechanisms.The NPC@Cu films show good tensile mechanical properties with a minimum elongation of 13.5%,which can be attributed to the good interface bonding and certain modulus matching between the nanoporous Cu layer and the Cu substrate.Our findings demonstrate that the design of film-substrate structure provides a feasible strategy for enhancing the mechanical properties of nanoporous metals.
基金Fundamental Research Programme of Yunnan Province(202201AU070041)the funding of Yunnan University Young Talent Programme(CZ21623201)+2 种基金the funding of State Key Laboratory of Coal Mine Disaster Dynamics and Control in Chongqing University(2011DA105287-FW202106)the funding from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,under the Institute of Geology in Chinese Academy of Geological Sciences,Beijing(J1901)Much gratitudes for the Department of Mines,Industry Regulation and Safety under the Government of Western Australia for granting us the core samples under Approval Nos.G32825&N00413。
文摘The identification of stratigraphic'sweet-spot'interval is significant in oil and gas formation evaluation.However,formation evaluation in macroscopic-scale merely provides low resolution and limited infor-mation,thus may lead to uncertainties in resource estimation.To accurately identify the'sweet-spot'intervals amongst heterogeneous lithofacies,we conducted a very high-resolution and quantitative analysis from in-situ macroscopic scale to laboratory microscopic scale on the Goldwyer formation of Canning Basin,Western Australia.The comprehensive advanced well logging and slim-compact micro imager(SCMI)technologies were synthetically applied in couple with the laboratory nanoscaled ex-periments.The results unveiled an extraordinarily large lithofacies heterogeneity between different rock intervals,with distinguished features shown in Goldwyer Ⅰ,Ⅱ,and Ⅲ members.The most favorable lithofacies is recognized as the laminated argillaceous thermally-matured organic matter(OM)-rich mudstone,which is widely developed in Goldwyer Ⅲ as the major attributor to'sweet-spot'intervals.Goldwyer Ⅱ is exclusively characterized by thick mudstone intervals(94.4%),interbedded with thin calcareous mudstones(5.5%),corresponding to a depositional environment of low-energy distal section of the outer ramp settings.Microscopically,the most favorable lithofacies in'sweet-spot'intervals develop numerous OM-/mineral nanopores for hydrocarbon storage.Illite-rich lithofacies develops abundant inter-particle pores from 2 to 17 nm that mainly contribute to pore volume for free gas storage capacity.OM-rich lithofacies with higher maturity have OM-pores with good connectivity,bearing large specific surface area that is beneficial for adsorbed gas capacity.
文摘基于商用铸造Mg-Si合金,采用化学腐蚀和碳包覆技术相结合,制备出纳米多孔硅/碳复合负极。通过SEM、XRD和EDS技术表征了该负极的物相构成、化学成分和微观结构,并对其电化学性能进行了研究。结果表明,该负极具有典型的三维双连通纳米多孔结构,且碳层均匀包覆在多孔硅表面。0.1 C电流密度下,该负极首次充/放电比容量为724.44/1404.49 m A·h/g,循环寿命800次以上,且在-30~50℃的温度范围内可正常使用。
基金Supported by National Natural Science Foundation of China (10835008)Knowledge Innovation Program of Chinese Academy of Sciences (KJCX3-SYW-N8)Momentous Equipment Program of Chinese Academy of Sciences (YZ200829)
文摘The nanopore structures in precursors Four carbon-fiber precursors are prepared. They are crucial to the performance of PAN-based carbon fibers are bath-fed filaments (A), water-washing filaments (B) hot-stretching filaments (C) and drying-densification filaments (D). Synchrotron radiation small angle X-ray scattering is used to probe and compare the nanopore structures of the four fibers. The nanopore size, discrete volume distribution, nanopore orientation degree along the fiber axis and the porosity are obtained. The results demonstrate that the nanopores are mainly formed in the water-washing stage. During the processes of the subsequent production technologies, the slenderness ratio of nanopores and their orientation degree along the fiber axis increase further and simultaneously, the porosity decreases. These results are helpful for improving the performance of the final carbon fibers.