期刊文献+
共找到1,523篇文章
< 1 2 77 >
每页显示 20 50 100
Ambient-Condition Strategy for Production of Hollow Ga_(2)O_(3)@rGO Crystalline Nanostructures Toward Efficient Lithium Storage 被引量:1
1
作者 Dongdong Zhang Qiliang Wei +7 位作者 Haili Huang Lan Jiang Jie Teng Ruizhi Yu Qing Zhang Shengxing Liu Lin Wang Weiyou Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期75-82,共8页
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe... Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications. 展开更多
关键词 ambient condition core-shell nanostructures Ga_(2)O_(3) Li-ion batteries rGO
下载PDF
Mass-Based Environmental Factor and Energy Assessment of Microwave-Assisted Synthesized Transition Metal Nanostructures
2
作者 Victor J. Law 《American Journal of Analytical Chemistry》 CAS 2024年第6期201-218,共18页
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy... This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage. 展开更多
关键词 Microwave-Assisted Synthesis Transition Metals nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Piezoresistive behavior of elastomer composites with segregated network of carbon nanostructures and alumina
3
作者 Chun-Yan Tang Lei Liu +3 位作者 Kai Ke Bo Yin Ming-Bo Yang Wei Yang 《Nano Materials Science》 EI CAS CSCD 2023年第3期312-318,共7页
Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensi... Electrically conductive elastomer composites(CECs)with segregated networks of conductive nanofillers show high potential in stretchable strain sensors due to balanced mechanical and electrical properties,yet the sensitivity at low strain is generally insufficient for practical application.Herein,we report an easy and effective way to improve the resistive response to low strain for CECs with segregated network structure via adding stiff alumina into carbon nanostructures(CNS).The CEC containing 0.7 wt%CNS and 5 wt%Al_(2)O_(3) almost sustains the same elasticity(elongation at break of~900%)and conductivity(0.8 S/m)as the control,while the piezoresistive sensitivity is significantly improved.Thermoplastic polyurethane(TPU)composites with a segregated network of hybrid nanofillers(CNS and Al_(2)O_(3))show much higher strain sensitivity(Gauge factor,GF-566)at low strain(45%strain)due to a local stress concentration effect,this sensitivity is superior to that of TPU/CNS composites(GF-11).Such a local stress concentration effect depends on alumina content and its distribution at the TPU particle interface.In addition,CECs with hybrid fillers show better reproducibility in cyclic piezoresistive behavior testing than the control.This work offers an easy method for fabricating CECs with a segregated filler network offering stretchable strain sensors with a high strain sensitivity. 展开更多
关键词 Thermoplastic polyurethane Carbon nanostructures ALUMINA Conductive elastomer composites Stretchable strain sensor
下载PDF
Morphological features and nanostructures generated during SiC graphitization process
4
作者 孔雯霞 端勇 +2 位作者 章晋哲 王剑心 蔡群 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期638-643,共6页
Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates.In this work,we investi... Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates.In this work,we investigate the surface morphologies and atomic structures during graphitization process of 4H-SiC(0001) using scanning tunneling microscopy.Our high-magnified scanning-tunneling-microscope images exhibit the appearance and gradual developments of SiC(1 × 1)nanostructures after 1100℃ cleaning treatments,irregularly distributed among carbon nanocaps and(√3×√3) reconstruction domains.A model for the formation and growth progression of SiC(1 × 1) nanostructures has been proposed.When post-annealing temperature reaches 1300 ℃,the nanoholes and nanoislands can be observed on the surface,and multilayer graphene is often detected lying on the top surface of those nanoislands.These results provide profound insights into the complex evolution process of surface morphology during SiC thermal decomposition and will shed light on fabrication of SiC nanostructures and graphene nanoflakes. 展开更多
关键词 scanning tunneling microscopy(STM) SiC graphitization epitaxial graphene nanostructures
原文传递
Green Chemistry Allometry Test of Microwave-Assisted Synthesis of Transition Metal Nanostructures
5
作者 Victor J. Law Denis P. Dowling 《American Journal of Analytical Chemistry》 CAS 2023年第11期493-518,共26页
Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rath... Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rather than hours when compared to conventional thermal heating. This works describes a dual allometry test for the discrimination between the solvents and reagents used in the microwave-assisted synthesis of transition metal (zinc oxide, palladium silver, platinum, and gold) nanostructures. The test is performed in log-log process energy phase-space projection, where the synthesis data (kJ against kJ·mol<sup>-1</sup>) has a power-law signature. The test is shown to discriminate between recommended Green Chemistry, problematic Green Chemistry, and Green Chemistry hazardous solvents. Typically, recommended Green chemistry exhibits a broad y-axes distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and lower exponent = 0.64. Non-Green Chemistry hazardous data exhibits a further narrowing of the y-axes distribution within upper exponent = 0.87 and lower exponent = 0.66. In all three cases, the y-axes is aligned to original database power-law signature. It is also shown that in the x-axes direction (process energy budget) the grouped order of magnitude decreases from four orders for recommended Green Chemistry solvent and reagent data, through two orders for non-Green Chemistry hazardous material and down to one order for problematic Green Chemistry. 展开更多
关键词 Microwave-Assisted Synthesis Transition Metals nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions 被引量:5
6
作者 Shanlin Li Danmin Liu +4 位作者 Guowei Wang Peijie Ma Xunlu Wang Jiacheng Wang Ruguang Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期609-621,共13页
Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution react... Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution reaction(OER)at the anode.To reduce the operating voltage of electrolyzer,herein thermodynamically favorable glycerol oxidation reaction(GOR)is proposed to replace the OER.Moreover,vertical Ni O flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution,respectively.Meanwhile,excluding the explosion risk of mixed H_2/O_(2),a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer.Impressively,the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV,and exhibits good long-term stability.This work provides a new paradigm of hydrogen production with low cost and good feasibility. 展开更多
关键词 Hydrogen evolution reaction Glycerol oxidation reaction Oxygen evolution reaction Flow cell NANOSTRUCTURE
下载PDF
Tailored BiVO_(4)/In_(2)O_(3)nanostructures with boosted charge separation ability toward unassisted water splitting 被引量:1
7
作者 Mi Gyoung Lee Jin Wook Yang +10 位作者 Ik Jae Park Tae Hyung Lee Hoonkee Park Woo Seok Cheon Sol ALee Hyungsoo Lee Su Geun Ji Jun Min Suh Jooho Moon Jin Young Kim Ho Won Jang 《Carbon Energy》 SCIE CSCD 2023年第6期45-59,共15页
The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron tr... The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron transport layer for bismuth vanadate(BiVO_(4))with a short charge diffusion length.In_(2)O_(3)NRs reinforce the electron transport and hole blocking of BiVO_(4),surpassing the state-of-the-art photoelectrochemical performances of BiVO_(4)-based photoanodes.Also,a tannin-nickel-iron complex(TANF)is used as an oxygen evolution catalyst to speed up the reaction kinetics.The final TANF/BiVO_(4)/In_(2)O_(3)NR photoanode generates photocurrent densities of 7.1 mAcm^(−2) in sulfite oxidation and 4.2 mA cm^(−2) in water oxidation at 1.23 V versus the reversible hydrogen electrode.Furthermore,the“artificial leaf,”which is a tandem cell with a perovskite/silicon solar cell,shows a solar-to-hydrogen conversion efficiency of 6.2%for unbiased solar water splitting.We reveal significant advances in the photoactivity of TANF/BiVO_(4)/In_(2)O_(3)NRs from the tailored nanostructure and band structure for charge dynamics. 展开更多
关键词 bismuth vanadate HETEROJUNCTION indium oxide NANOSTRUCTURE photoelectrochemical water splitting
下载PDF
Generating micro/nanostructures on magnesium alloy surface using ultraprecision diamond surface texturing process
8
作者 Hanheng Du Mengnan Jiang +2 位作者 Zuankai Wang Zhiwei Zhu Suet To 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1472-1483,共12页
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm... The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics. 展开更多
关键词 Magnesium alloy MICRO/NANOSTRUCTURE Ultraprecision diamond surface texturing Cutting force Chip morphology Structural color
下载PDF
Triangular Au-Ag framework nanostructures prepared by multi-stage replacement and their spectral properties 被引量:1
9
作者 易早 张建波 +5 位作者 陈艳 陈善俊 罗江山 唐永建 吴卫东 易有根 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2049-2055,共7页
Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at... Triangular Au-Ag framework nanostructures (TFN) were synthesized via a multi-step galvanic replacement reaction (MGRR) of single-crystalline triangular silver nanoplates in a chlorauric acid (HAuCl4) solution at room temperature. The morphological, compositional, and crystal structural changes involved with reaction steps were analyzed by using transmission electron microscopy(TEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. The in-plane dipolar surface plasmon resonance (SPR) absorption band of the Ag nanoplates locating initially at around 700 nm gradually redshifted to 1 100 nm via a multi-stage replacement manner after 7 stages. The adding amount of HAuCl4 per stage influenced the average redshift value per stage, thus enabled a fine tuning of the in-plane dipolar band. A proposed formation mechanism of the original Ag nanoplates developing pores while growing Au nanoparticles covering this underlying structure at more reaction steps was confirmed by exploiting surface-enhanced Raman scattering (SERS). 展开更多
关键词 triangular Au-Ag framework nanostructures multi-stage galvanic replacement reaction surface plasmon resonance surface-enhanced Raman scattering
下载PDF
Superchiral fields generated by nanostructures and their applications for chiral sensing 被引量:1
10
作者 Huizhen Zhang Weixuan Zhang +2 位作者 Saisai Hou Rongyao Wang Xiangdong Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期32-48,共17页
Chirality is ubiquitous in natural world.Although with similar physical and chemical properties,chiral enantiomers could play different roles in biochemical processes.Discrimination of chiral enantiomers is extremely ... Chirality is ubiquitous in natural world.Although with similar physical and chemical properties,chiral enantiomers could play different roles in biochemical processes.Discrimination of chiral enantiomers is extremely important in biochemical,analytical chemistry,and pharmaceutical industries.Conventional chiroptical spectroscopic methods are disadvantageous at a limited detection sensitivity because of the weak signals of natural chiral molecules.Recently,superchiral fields were proposed to effectively enhance the interaction between light and molecules,allowing for ultrasensitive chiral detection.Intensive theoretical and experimental works have been devoted to generation of superchiral fields based on artificial nanostructures and their application in ultrasensitive chiral sensing.In this review,we present a survey on these works.We begin with the introduction of chiral properties of electromagnetic fields.Then,the optical chirality enhancement and ultrasensitive chiral detection based on chiral and achiral nanostructures are discussed respectively.Finally,we give a short summary and a perspective for the future ultrasensitive chiral sensing. 展开更多
关键词 superchiral fields chiral detection chiral nanostructures achiral nanostructures
原文传递
Synthesis of Micron-sized Hexagonal and Flowerlike Nanostructures of Lead Oxide (PbO_2) by Anodic Oxidation of Lead
11
作者 Dinesh Pratap Singh Onkar Nath Srivastava 《Nano-Micro Letters》 SCIE EI CAS 2011年第4期223-227,共5页
Micron sized hexagon- and flower-like nanostructures of lead oxide(α-PbO2) have been synthesized by very simple and cost effective route of anodic oxidation of lead sheet. These structures were easily obtained by t... Micron sized hexagon- and flower-like nanostructures of lead oxide(α-PbO2) have been synthesized by very simple and cost effective route of anodic oxidation of lead sheet. These structures were easily obtained by the simple variation of applied voltage from 2-6 V between the electrodes. Lead sheet was used as an anode and platinum sheet served as a cathode. Anodic oxidation at 2 V resulted in the variable edge sized(1-2 μm) hexagon-like structures in the electrolyte. When the applied potential was increased to 4 V a structure of distorted hexagons consisting of some flower-like structures were obtained. Further increment of potential up to 6 V resulted in flower like structures of α-PbO2 having six petals. The diameter of the flower-like structures was 200-500 nm and the size of a petal was 100-200 nm. 展开更多
关键词 Lead oxide nanostructures Anodic oxidation Hexagon-like structures Flower-like nanostructures
下载PDF
Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors 被引量:11
12
作者 Chen Li Xiong Zhang +5 位作者 Kai Wang Fangyuan Su Cheng-Meng Chen Fangyan Liu Zhong-Shuai Wu Yanwei Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期352-367,共16页
The burgeoning global economy during the past decades gives rise to the continuous increase in fossil fuels consumption and rapid growth of CO_(2) emission,which demands an urgent exploration into green and sustainabl... The burgeoning global economy during the past decades gives rise to the continuous increase in fossil fuels consumption and rapid growth of CO_(2) emission,which demands an urgent exploration into green and sustainable devices for energy storage and power management.Supercapacitors based on activated carbon electrodes are promising systems for highly efficient energy harvesting and power supply,but their promotion is hindered by the moderate energy density compared with batteries.Therefore,scalable conversion of CO_(2) into novel carbon nanostructures offers a powerful alternative to tackle both issues:mitigating the greenhouse effect caused by redundant atmospheric CO_(2) and providing carbon materials with enhanced electrochemical performances.In this tutorial review,the techniques,opportunities and barriers in the design and fabrication of advanced carbon materials using CO_(2) as feedstock as well as their impact on the energy-storage performances of supercapacitors are critically examined.In particular,the chemical aspects of various Cv2 conversion reactions are highlighted to establish a detailed understanding for the science and technology involved in the microstructural evolution,surface engineering and porosity control of CO_(2)-converted carbon nanostructures.Finally,the prospects and challenges associated with the industrialization of CO_(2) conversion and their practical application in supercapacitors are also discussed. 展开更多
关键词 Carbon materials SUPERCAPACITORS CO_(2)conversion nanostructures
下载PDF
Synthesis and applications of MOF-derived porous nanostructures 被引量:15
13
作者 Min Hui Yap Kam Loon Fow George Zheng Chen 《Green Energy & Environment》 SCIE 2017年第3期218-245,共28页
Metal organic frameworks(MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area... Metal organic frameworks(MOFs) represent a class of porous material which is formed by strong bonds between metal ions and organic linkers. By careful selection of constituents, MOFs can exhibit very high surface area, large pore volume, and excellent chemical stability.Research on synthesis, structures and properties of various MOFs has shown that they are promising materials for many applications, such as energy storage, gas storage, heterogeneous catalysis and sensing. Apart from direct use, MOFs have also been used as support substrates for nanomaterials or as sacrificial templates/precursors for preparation of various functional nanostructures. In this review, we aim to present the most recent development of MOFs as precursors for the preparation of various nanostructures and their potential applications in energy-related devices and processes. Specifically, this present survey intends to push the boundaries and covers the literatures from the year 2013 to early 2017,on supercapacitors, lithium ion batteries, electrocatalysts, photocatalyst, gas sensing, water treatment, solar cells, and carbon dioxide capture.Finally, an outlook in terms of future challenges and potential prospects towards industrial applications are also discussed. 展开更多
关键词 Metal organic frameworks Porous nanostructures SUPERCAPACITORS Lithium ion batteries Heterogeneous catalyst
下载PDF
Morphology and Crystallinity-controlled Synthesis of Manganese Cobalt Oxide/Manganese Dioxides Hierarchical Nanostructures for High-Performance Supercapacitors 被引量:3
14
作者 Fei Li Gang Li +5 位作者 Hao Chen Jia Qi Jia Fan Dong Yao Bo Hu Zheng Guo Shang 张育新 《功能材料信息》 2015年第4期17-32,共16页
We demonstrate a novel preparative strategy for the well-controlled MnCo_2O_(4.5)@MnO_2 hierarchical nanostructures.Bothδ-MnO_2 nanosheets andα-MnO_2 nanorods can uniformly decorate the surface of MnCo_2O_(4.5)nanow... We demonstrate a novel preparative strategy for the well-controlled MnCo_2O_(4.5)@MnO_2 hierarchical nanostructures.Bothδ-MnO_2 nanosheets andα-MnO_2 nanorods can uniformly decorate the surface of MnCo_2O_(4.5)nanowires to form core-shell heterostructures.Detailed electrochemical characterization reveals that MnCo_2O_(4.5)@δ-MnO_2 pattern exhibits not only high specific capacitance of 357.5 F g^(-1)at a scan rate of 0.5 A g^(-1),but also good cycle stability(97%capacitance retention after 1000 cycles at a scan rate of 5 A g^(-1)),which make it have a promising application as a supercapacitor electrode material. 展开更多
关键词 MNO2 MANGANESE cobalt oxide Chemical synthesis CORE-SHELL nanostructures SUPERCAPACITOR
下载PDF
Kinetic study of methane hydrate formation in the presence of carbon nanostructures 被引量:4
15
作者 Saeid Abedi-Farizhendi Mina Iranshahi +2 位作者 Abolfazl Mohammadi Mehrdad Manteghian Amir H. Mohammadi 《Petroleum Science》 SCIE CAS CSCD 2019年第3期657-668,共12页
The effect of synthesized nanostructures,including graphene oxide,chemically reduced graphene oxide with sodium dodecyl sulfate(SDS),chemically reduced graphene oxide with polyvinylpyrrolidone,and multi-walled carbon ... The effect of synthesized nanostructures,including graphene oxide,chemically reduced graphene oxide with sodium dodecyl sulfate(SDS),chemically reduced graphene oxide with polyvinylpyrrolidone,and multi-walled carbon nanotubes,on the kinetics of methane hydrate formation was investigated in this work.The experiments were carried out at a pressure of 4.5 MPa and a temperature of 0 ℃ in a batch reactor.By adding nanostructures,the induction time decreases,and the shortest induction time appeares at certain concentrations of reduced graphene oxide with SDS and graphene oxide,that is,at a concentration of 360 ppm for reduced graphene oxide with SDS and 180 ppm for graphene oxide,with a 98% decrease in induction time compared to that in pure water.Moreover,utilization of carbon nanostructures increases the amount and the rate of methane consumed during the hydrate formation process.Utilization of multi-walled carbon nanotubes with a concentration of 90 ppm showes the highest amount of methane consumption.The amount of methane consumption increases by 173% in comparison with that in pure water.The addition of carbon nanostructures does not change the storage capacity of methane hydrate in the hydrate formation process,while the percentage of water conversion to hydrate in the presence of carbon nanotubes increases considerably,the greatest value of which occurres at a 90 ppm concentration of carbon nanotubes,that is,a 253% increase in the presence of carbon nanotubes compared to that of pure water. 展开更多
关键词 CLATHRATE HYDRATE Kinetics Carbon nanostructures Graphene OXIDE SDS PVP
下载PDF
Femtosecond Laser Thermal Accumulation-Triggered Micro-/Nanostructures with Patternable and Controllable Wettability Towards Liquid Manipulating 被引量:5
16
作者 Kai Yin Lingxiao Wang +4 位作者 Qinwen Deng Qiaoqiao Huang Jie Jiang Guoqiang Li Jun He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期206-218,共13页
Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,micro... Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces. 展开更多
关键词 WETTABILITY Femtosecond laser Micro-/nanostructures Thermal accumulation Liquid manipulating
下载PDF
Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems 被引量:4
17
作者 Xiaoping Chen Zhixiang Zhang +3 位作者 Lina Chi Aathira Krishnadas Nair Wenfeng Shangguan Zheng Jiang 《Nano-Micro Letters》 SCIE EI CAS 2016年第1期1-12,共12页
Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for imp... Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO_2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/Cd S/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system(Bi_2S_3/TNA as photoanode and Pt/Si PVC as photocathode at the same time), a self-bias(open-circuit voltage Voc= 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed. 展开更多
关键词 PHOTOELECTROCHEMICAL water SPLITTING nanostructures REACTION system Heterojuction Hybrid systems
下载PDF
Laser additive manufacturing of Si/ZrO_(2)tunable crystalline phase 3D nanostructures 被引量:6
18
作者 Greta Merkininkaitė Edvinas Aleksandravičius +2 位作者 Mangirdas Malinauskas Darius Gailevičius SimasŠakirzanovas 《Opto-Electronic Advances》 SCIE EI 2022年第5期22-32,共11页
The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials wit... The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures.In this work,it was examined a series of organometallic polymer precursors with different silicon(Si)and zirconium(Zr)molar ratios,ranging from 9:1 to 5:5,prepared via sol-gel method.All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano-and micro-feature sized structures.Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase.The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis,which revealed a lower crystallization temperature for microstructures compared to bulk materials.Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400℃.Under the proper conditions,a wide variety of crystalline phases as well as zircon(ZrSiO_(4)-a highly stable material)can be observed.In addition,the highest new record of achieved resolution below 60 nm has been reached.The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment. 展开更多
关键词 3D nanostructures additive manufacturing crystalline phases laser lithography 3D printing high resilience inorganic materials SZ2080^(TM)
下载PDF
Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications 被引量:5
19
作者 Qingdong Ou Xiaozhi Bao +5 位作者 Yinan Zhang Huaiyu Shao Guichuan Xing Xiangping Li Liyang Shao Qiaoliang Bao 《Nano Materials Science》 CAS 2019年第4期268-287,共20页
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe... Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies. 展开更多
关键词 Band structure engineering Perovskite nanostructures Optoelectronic applications Doping Heterostructures
下载PDF
Strongly coupled N-doped carbon/Fe3O4/N-doped carbon hierarchical micro/nanostructures for enhanced lithium storage performance 被引量:3
20
作者 Tian tian Ma Xianghong Liu +3 位作者 Li Sun Yongshan Xu Lingli Zheng Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期43-51,共9页
A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost ... A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs. 展开更多
关键词 Iron OXIDE Micro/nanostructures CARBON TUBES ANODE Coupling
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部