期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Thrust characteristics of nano-carbon/Al/oxygenated salt nanothermites for micro-energetic applications
1
作者 Ahmed Fahd Alex Baranovsky +3 位作者 Charles Dubois Jamal Chaouki Sherif Elbasuney Shady Shokry 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期55-69,共15页
Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozz... Combustion within small motors is key in the application-specific development of nanothermite-based micro-energetic systems. This study evaluates the performance of nanothermite mixtures in a converging-diverging nozzle and an open tube. Mixtures were prepared using nano-aluminum(n-Al),potassium perchlorate(KClO_(4)), and different carbon nanomaterials(CNMs) including graphene-oxide(GO), reduced GO, carbon nanotubes(CNTs) and nanofibers(CNFs). The mixtures were packed at different densities and ignited by laser beam. Performance was measured using thrust measurement,high-speed imaging, and computational fluid dynamics modeling, respectively. Thrust, specific impulse(ISP), volumetric impulse(ISV), as well as normalized energy were found to increase notably with CNM content. Two distinctive reaction regimes(fast and slow) were observed in combustion of low and high packing densities(20% and 55%TMD), respectively. Total impulse(IFT) and ISPwere maximized in the 5%GO/Al/KClO_4 mixture, producing 7.95 m N·s and 135.20 s respectively at 20%TMD, an improvement of 57%compared to a GO-free sample(5.05 m N·s and 85.88 s). CFD analysis of the motors over predicts the thrust generated but trends in nozzle layout and packing density agree with those observed experimentally;peak force was maximized by reducing packing density and using an open tube. The numerical force profiles fit better for the nozzle cases than the open tube scenarios due to the rapid nature of combustion. This study reveals the potential of GO in improving oxygenated salt-based nanothermites,and further demonstrates their applicability for micro-propulsion and micro-energetic applications. 展开更多
关键词 nanothermites Graphene oxide Reduced graphene oxide Carbon nano material Oxygenated salts Laser ignition Computational fluid dynamics
下载PDF
Ignition of nanothermites by a laser diode pulse 被引量:1
2
作者 Alexander Yu.Dolgoborodov Vladimir G.Kirilenko +3 位作者 Michael A.Brazhnikov Leonid I.Grishin Michael L.Kuskov Georgii E.Valyano 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期194-204,共11页
Experimental investigation has been carried out for laser ignition and combustion of nanothermites based on aluminum and oxides of copper,bismuth and molybdenum.Ultrasonic mixing of nanosized powders was used to produ... Experimental investigation has been carried out for laser ignition and combustion of nanothermites based on aluminum and oxides of copper,bismuth and molybdenum.Ultrasonic mixing of nanosized powders was used to produce compositions.For thermite ignition,initiating laser pulse with a maximum intensity of 770 W/cm2 was generated by a laser diode with a wavelength of 808 nm.The ignition delay times,the minimum initiation energy density,and the average burning rate at various thermite densities and mass fractions of components were determined by recording the emission of radiation of the reaction products using a multichannel pyrometer jointly with a high-speed video camera.The effect of adding carbon black on the threshold parameters of a laser pulse was also studied.Based on the obtained results,certain assumptions were put forward with regard to the mechanism of nanothermites’ignition by laser radiation and their burning.In particular,the assumptions were made on the two-stage process of the reaction initiation and jet burning mechanism of porous nanothermites. 展开更多
关键词 nanothermites Laser ignition Burning rate Ignition delay
下载PDF
Preparation and characterization of Al/B/Fe_2O_3 nanothermites 被引量:7
3
作者 SHEN LianHua LI GuoPing +2 位作者 LUO YunJun GAO Kun GE Zhen 《Science China Chemistry》 SCIE EI CAS 2014年第6期797-802,共6页
A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analy... A sol-gel synthetic approach combined with an ultrasonic method was utilized to prepare Al/B/Fe2O3 nanothermites.The structure and properties of the prepared nanothermites were characterized by thermogravimetric analysis,differential scanning calorimetry,scanning electron microscopy,X-ray diffraction,and an impact sensitivity test.The results verified that the nano-aluminum and the micro-boron were uniformly dispersed in the pores of the iron oxide gel.The heat of the prepared Al/B/Fe2O3 nanothermites was 1.3 times that of the simple physically mixed sample.In addition,the heat of the combustion test showed that these materials were indeed energetic.Small-scale safe experiments also showed that the prepared materials through sol-gel were relatively insensitive to standard impact. 展开更多
关键词 SOL-GEL nanothermites energetic materials PROPERTIES
原文传递
Ti/WO_(3),a nanothermite for special purposes:An experimental study
4
作者 Mateusz Polis Agnieszka Stolarczyk +4 位作者 Konrad Szydlo Tomasz Jarosz Marcin Procek Sebastian Slawski Lukasz Hawelek 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期1-12,共12页
A new nanothermite system,composed of titanium and tungsten trioxide is reported.Initial investigations show that it has low-average sensitivity to mechanical stimuli(friction,impact),but that its sensitivity to laser... A new nanothermite system,composed of titanium and tungsten trioxide is reported.Initial investigations show that it has low-average sensitivity to mechanical stimuli(friction,impact),but that its sensitivity to laser irradiation can be controlled in a moderately wide range.The combustion of this nanothermite system takes place at a very high apparent temperature(>3695 K)and it follows the key predictions of the established reactive sintering mechanism,as supported by SEM-EDS and XRD analyses. 展开更多
关键词 Nanothermite COMBUSTION Energetic material Laser initiation Sensitivity
下载PDF
Mitigating the negative catalytic effect of CuO by FAS-17 coated Al nanopowder:Isothermal ageing of Al/CuO nanothermite at 71°C and 60%relative humidity
5
作者 Fuwei Li Qian Wang +6 位作者 Jian Cheng Zehua Zhang Yuxuan Zhou Keer Ouyang Jianbing Xu Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期156-167,共12页
The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due t... The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment. 展开更多
关键词 Al/CuO nanothermite FAS-17 coating Aging and failure process
下载PDF
Positive effects of PVP in MIC:Preparation and characterization of Al-Core heterojunction fibers
6
作者 Fuwei Li Yue-ting Wang +6 位作者 Cheng-ai Wang Yun Shen Ze-hua Zhang Jian Cheng Shuang-zhang Wu Ying-hua Ye Rui-qi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期52-62,共11页
The core-shell metastable intermolecular composites(MIC)have attracted much attention in the past few years due to their unique properties.Here,the preparation of Al-Core heterojunction fibers using PVP as a template ... The core-shell metastable intermolecular composites(MIC)have attracted much attention in the past few years due to their unique properties.Here,the preparation of Al-Core heterojunction fibers using PVP as a template is proposed.The nano-Al was directly added to the precursor solution of cupric acetate monohydrate(CAM)/Polyvinylpyrrolidone(PVP),and the initial Al@CAM/PVP fibers were obtained via electrospinning.The core-shell MIC fibers are then obtained by calcining the initial fibers.The morphology,structure,and composition of Al-core MIC fibers were characterized,that the energetic fibers calcined at 300℃,350℃,and 400℃have a core-shell structure with shell compositions CuxO and PVP,CuxO and Cu O,respectively.The energy release characteristics of Al-core MIC were investigated,and preliminary ignition tests were performed using an ignition temperature measuring instrument and a pulsed laser.The energetic fibers calcined at 300℃exhibited unique properties.The decomposition of PVP in the shell layer promoted exotherm,and a low-temperature exothermic peak was shown at 372-458℃.Lower ignition temperatures and higher flame heights were observed in the combustion tests than calcination at 350℃and 400℃.An unexpected result was that PVP can play a positive role in Al/CuO nanothermites.Simultaneously,this preparation method provided an idea for the integrated preparation of core-shell Al-Core MIC fibers and tuning the properties of MIC. 展开更多
关键词 Al-Core heterojunction structure Metastable intermolecular composites(MIC) Al/CuO nanothermites Polyvinylpyrrolidone(PVP)
下载PDF
Thermodynamics and performance of Al/CuO nanothermite with different storage time 被引量:5
7
作者 Cheng-ai Wang Jian-bing Xu +6 位作者 Yun Shen Yue-ting Wang Teng-long Yang Ze-hua Zhang Fu-wei Li Rui-qi Shen Ying-hua Ye 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期741-747,共7页
The storage stability of energetic materials is important for its application. Here, the storage stability of Al/CuO nanothermite, which was prepared by electrospray method and stored with different storage time, was ... The storage stability of energetic materials is important for its application. Here, the storage stability of Al/CuO nanothermite, which was prepared by electrospray method and stored with different storage time, was systematically researched. The activation energy of Al/CuO nanothermite was calculated by differential scanning calorimetry(DSC). The ignition temperature and the curve pressure history of Al/Cu O nanothermite was measured using ignition temperature measuring device and constant-volume pressurization tests, respectively. Further, the thermites were characterized by X-ray Diffractometer(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM) and Transmission electron microscopy(TEM). The results show that the morphology of the thermites did not change significantly. The activation energy was decreased from 254.1 k J/mol to 181.8 k J/mol after storage for 13 months. When stored for 0, 7 and 13 months, the peak pressures of Al/CuO nanothermite were 685.8 k Pa,626.3 k Pa and 625.5 k Pa, respectively. In addition to the ignition temperature, it was 775 ℃, 739 ℃ and754 ℃, respectively. This result indicated that the ignition and combustion properties of Al/CuO nanothermite are obviously reduced when stored for a long time, at room temperature. 展开更多
关键词 Al/CuO nanothermites Stroage stability THERMODYNAMICS
下载PDF
Nanothermite colloids: A new prospective for enhanced performance 被引量:1
8
作者 M. Gaber Zaky Ahmed M. Abdalla +3 位作者 Rakesh P. Sahu Ishwar K. Puri Mostafa Radwan Sherif Elbasuney 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期319-325,共7页
Nanothermites (metal oxide/metal) can offer tremendously exothermic self sustained reactions. CuO is one of the most effective oxidizers for naonothermite applications. This study reports on two prospectives for the m... Nanothermites (metal oxide/metal) can offer tremendously exothermic self sustained reactions. CuO is one of the most effective oxidizers for naonothermite applications. This study reports on two prospectives for the manufacture of CuO nanoparticles. Colloidal CuO particles of 15 nm particle size were developed using hydrothermal synthesis technique. Multiwalled carbon nanotubes (MWCNTs) with surface are 700m2/g was employed as a substrate for synthesis of CuO-coated MWCNTs using electroless plating. On the other hand, aluminium particles with combustion heat of 32000 J/g is of interest as high energy density material. The impact of stoichiometric nanothermite particles (CuO/Al & Cuo-coated MWCNTs/Al) on shock wave strength of Al/TNT nanocomposite was evaluated using ballistic mortar test. While CuO-coated MWCNTs decreased the shock wave strength by 15%;colloidal CuO enhanced the shock wave strength by 30%. The superior performance of colloidal CuO particles was correlated to their steric stabilization with employed organic solvent. This is the first time ever to report on fabrication, isolation, and integration of stablilized colloidal nanothermite particles into energetic matrix where intimate mixing between oxidizer and metal fuel could be achieved. 展开更多
关键词 HYDROTHERMAL synthesis NANOPARTICLES Carbon NANOTUBES nanothermites ENERGETIC materials
下载PDF
Combustion characteristic and aging behavior of bimetal thermite powders 被引量:6
9
作者 Hong-qi Nie Hay Yee Chan +1 位作者 Sreekumar Pisharath Huey Hoon Hng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期755-762,共8页
Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the pr... Nanothermites have been employed as fuel additives in energetic formulations due to their higher energy density over CHNO energetics. Nevertheless, sintering and degradation of nanoparticles significantly limit the practical use of nanothermites. In this work, combustion characteristic and aging behavior of aluminum/iron oxide(Al/Fe2O3) nanothermite mixtures were investigated in the presence of micron-scale nickel aimed to produce bimetal thermite powders. The results showed that the alumina content in the combustion residue increased from 88.3% for Al/Fe2O3 nanothermite to 96.5% for the nanothermite mixture containing 20 wt% nickel. Finer particle sizes of combustion residue were obtained for the nanothermite mixtures containing nickel, indicative of the reduced agglomeration. Both results suggested a more complete combustion in the bimetal thermite powders. Aging behavior of the nanothermite mixture was also assessed by measuring the heat of combustion of the mixture before and after aging process. The reduction in heat of combustion of nanothermite mixtures containing nickel was less severe as compared to a significant decrease for the nanothermite mixture without nickel, indicating better aging resistance of the bimetal thermite powders. 展开更多
关键词 Nanothermite BIMETAL Combustion efficiency AGING Thermochemical calculations
下载PDF
Fabrication and characterization of AleCuO nanocomposites prepared by sol-gel method 被引量:2
10
作者 Yue-ting Wang Xiao-ting Zhang +7 位作者 Jian-bing Xu Yun Shen Cheng-ai Wang Fu-wei Li Ze-hua Zhang Jian Chen Ying-hua Ye Rui-qi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1307-1312,共6页
In this study,AleCuO nanocomposites were fabricated by sol-gel method.As a contrast,the thermite was prepared by physical mixing at the equivalence ratio of 0.5,1,2,respectively.The intermediates and samples as prepar... In this study,AleCuO nanocomposites were fabricated by sol-gel method.As a contrast,the thermite was prepared by physical mixing at the equivalence ratio of 0.5,1,2,respectively.The intermediates and samples as prepared were characterized by SEM and XRD.The exothermic properties of the two samples prepared at different equivalence ratios were tested and the reaction products were characterized by XRD.The SEM results show that the sample prepared by the sol-gel method demonstrates a micron-sized agglomerated sphere formed by a mutual wrapping of Al NPs and CuO NPs,and the particles are evenly distributed in the agglomerate.In addition,when the content of Al powder is seriously insufficient,the heat release of the sample prepared by physical mixing is 1.6 times that of by sol-gel method.With the increase of Al powder content,the exothermic properties of Al/CuO NPs prepared by sol-gel method began to increase significantly compared with physical mixing and the difference is 1.5 times when the equivalence ratio increases to 2.It can be concluded that the reason for this result may be attributed to the different mass transfer modes of components due to the different morphologies of samples. 展开更多
关键词 Nanothermite Energetic materials SOL-GEL CHARACTERIZATION
下载PDF
Thermal and combustion behavior of Al-MnO_(2) nanothermite with poly(vinylidene fluoride-co-hexafluoropropylene) energetic binder 被引量:1
11
作者 Jia-xing Song Tao Guo +7 位作者 Miao Yao Jia-lin Chen Wen Ding Feng-li Bei Xiao-nan Zhang Qin Yin Jun-yi Huang Chang-hao Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1289-1295,共7页
Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content.To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF-HFP))on Al/MnO_(2) nanothermi... Fluoropolymers get increasing attention in energetic materials application due to the high fluorine content.To explore the effect of poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF-HFP))on Al/MnO_(2) nanothermite,the samples with different contents are prepared and characterized by SEM,TGDSC,XRD,and their ignition and combustion behavior are tested and recorded.The results show that P(VDF-HFP)as an energetic binder can combine the nanothermite components together,even exist in the gaps.The integrity of energetic materials has been improved.Thermal analysis shows that the addition of P(VDF-HFP)greatly changes the thermal reaction processes,and the exothermic peaks appear early,but the utilization of fuel and oxidizer is not efficient from the XRD results.Furthermore,the appropriate addition of P(VDF-HFP)can directly reduce the ignition energy threshold and increase the combustion time,which is necessary for the potential ignition charge application.The possible reasons for above phenomena are discussed and analyzed.This research provides a reference for improvement of thermitebased ignition charge formulation. 展开更多
关键词 Nanothermite FLUOROPOLYMERS COMBUSTION Thermal analysis
下载PDF
Additive manufacturing of energetic materials:Tailoring energetic performance via printing 被引量:4
12
作者 Nihan Chen Chunlin He Siping Pang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第32期29-47,共19页
Additive manufacturing(AM),also called three-dimensional(3D)printing,has been developed to obtain energetic materials within the past decade.3D printing represents a family of flexible manufacturing techniques that en... Additive manufacturing(AM),also called three-dimensional(3D)printing,has been developed to obtain energetic materials within the past decade.3D printing represents a family of flexible manufacturing techniques that enable fast and accurate fabrication of structures with complex 3D features and a broad range of sizes,from submicrometer to several meters.Various methods have already been explored,including templating,melting extrusion,inkjet printing and electrospray methods.It was demonstrated that the structure achieved by AM could be used to manipulate the reactivity of energetic or reactive materials by changing the flow of gases and entrained particles via architecture.By employing different AM techniques,energetic materials with controllable nanostructures and uniformly dispersed ingredients can be prepared.It is exciting to tailor the energy release without defaulting to change the formulation of the conventional method.The combustion and mechanical properties of conventional energetic materials can be retained at the same time.In this review,the preparation and characterization of AM energetic materials that have been developed in the last decade are summarized.Various AM techniques used in the fabrication of energetic materials are compared and discussed.In particular,formulations of energetic materials applied in AM,metallic fuels,binders and energetic fillers and their advantages in terms of combustion efficiency and other properties are proposed. 展开更多
关键词 Additive manufacturing Energetic materials Nanothermite PROPELLANT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部