期刊文献+
共找到12,502篇文章
< 1 2 250 >
每页显示 20 50 100
Comparison of electrochemical behaviors of Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe and Ti-6Al-4V titanium alloys in NaNO_(3) solution 被引量:1
1
作者 Jia Liu Shuanglu Duan +1 位作者 Xiaokang Yue Ningsong Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期750-763,共14页
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici... The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed. 展开更多
关键词 electrochemical machining dissolution behavior β-CEZ titanium alloy polarization curve current efficiency
下载PDF
Preparation and Properties of Cu-Containing High-entropy Alloy Nitride Films by Magnetron Sputtering on Titanium Alloy
2
作者 DENG Wanrong YANG Wei +5 位作者 YU Sen LAN Nan MA Xiqun WANG Liqun GAO Wei CHEN Jian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1586-1594,共9页
Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface com... Magnetron sputtering deposition with regulated Cu target power was used for depositing Cu-containing high-entropy alloy nitride(Cu-(HEA)N)films on TC4 titanium alloy substrates.The microscopic morphologies,surface compositions,and thicknesses of the films were characterized using SEM+EDS;the anti-corrosion,wear resistance and antibacterial properties of the films in simulated seawater were investigated.The experimental results show that all four Cu-(HEA)N films are uniformly dense and contained nanoparticles.The film with Cu doping come into contact with oxygen in the air to form cuprous oxide.The corrosion resistance of the(HEA)N film without Cu doping on titanium alloy is better than the films with Cu doping.The Cu-(HEA)N film with Cu target power of 16 W shows the best wear resistance and antibacterial performance,which is attributed to the fact that Cu can reduce the coefficient of friction and exacerbate corrosion,and the formation of cuprous oxide has antibacterial properties.The findings of this study provide insights for engineering applications of TC4 in the marine field. 展开更多
关键词 titanium alloy high-entropy alloy nitride film magnetron sputtering properties
原文传递
Recent innovations in laser additive manufacturing of titanium alloys
3
作者 Jinlong Su Fulin Jiang +8 位作者 Jie Teng Lequn Chen Ming Yan Guillermo Requena Lai-Chang Zhang Y Morris Wang Ilya V Okulov Hongmei Zhu Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期2-37,共36页
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite... Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted. 展开更多
关键词 additive manufacturing titanium alloys auxiliary field machine learning aerospace materials lightweight materials novel alloys
下载PDF
Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface
4
作者 Yao Jia Jianping Lai +3 位作者 Jiaxin Yu Huimin Qi Yafeng Zhang Hongtu He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期309-320,共12页
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p... Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields. 展开更多
关键词 Electroless coating titanium alloy TRIBOLOGY WEAR Heat treatment NANOINDENTATION
下载PDF
Hot Deformation Behavior of Ti-6Al-4V-0.5Ni-0.5Nb Titanium Alloy
5
作者 ZHU Guochuan LIU Qiang +6 位作者 SONG Shengyin HUI Songxiao YU Yang YE Wenjun QI Jun TANG Zhengwei XU Penghai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1270-1277,共8页
Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The... Characterization of hot deformation behavior of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was investigated through isothermal compression at various temperatures from 750 to 1050℃and strain rate from 0.01 to 10 s^(-1).The isothermal compression experiment results showed that the peak stress of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy decreased with the temperature increasing and the strain rate decreasing.The softening mechanism was dynamic recovery below T_(β)and changed to dynamic recrystallization above T_(β).The arrheniustype relationship was used to calculate the constitutive equation of Ti-6Al-4V-0.5Ni-0.5Nb alloy in two-phase regions.It was found that the apparent activation energies were 427.095 kJ·mol^(-1)in theα+βphase region and 205.451 kJ·mol^(-1)in theβphase region,respectively.On the basis of dynamic materials model,the processing map is generated,which shows that the highest peak efficiency of power dissipation of 56%occurs at about 1050℃/0.01 s^(-1).It can be found in the processing maps that the strain had significant effect on the peak region of power dissipation efficiency of Ti-6Al-4V-0.5Ni-0.5Nb alloy.Furthermore,optimized hot working regions were investigated and validated through microstructure observation.The optimum thermo mechanical process condition for hot working of Ti-6Al-4V-0.5Ni-0.5Nb titanium alloy was suggested to be in the temperature range of 950-1000℃with a strain rate of 0.01-0.1 s^(-1). 展开更多
关键词 titanium alloy hot deformation processing map dynamic recrystallization
原文传递
A new rhombohedral phase and its 48 variants inβtitanium alloy
6
作者 Xin-nan WANG Ming HAN +2 位作者 Fu-rong ZHANG Guang-ming ZHAO Zhi-shou ZHU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2849-2863,共15页
A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconst... A new rhombohedral phase(termed R′)in a solution-aging-treated titanium alloy(Ti-4.5Al-6.5Mo-2Cr-2Nb-1V-1Sn-1Zr,wt.%)was identified.Its accurate Bravais lattice parameters were determined by a novel unit cell reconstruction method based on conventional selected-area electron diffraction(SAED)technique.The orientation relationship between R'phase and BCC phase was revealed.The results show that the R′phase is found to have 48crystallographically equivalent variants,resulting in rather complicated SAED patterns with high-order reflections.A series of in-situ SAED patterns were taken along both low-and high-index zone axes,and all weak and strong reflections arising from the 48 variants were properly explained and directly assigned with self-consistent Miller indices,confirming the presence of the rhombohedral phase.Additionally,some criteria were also proposed for evaluating the indexed results,which together with the Bravais lattice reconstruction method shed light on the microstructure characterization of even unknown phases in other alloys. 展开更多
关键词 titanium alloy rhombohedral phase Bravais lattice reconstruction VARIANT orientation relationship
下载PDF
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling
7
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
下载PDF
Microstructure and mechanical properties of TC21 titanium alloy by near-isothermal forging 被引量:14
8
作者 石志峰 郭鸿镇 +2 位作者 刘瑞 王晓晨 姚泽坤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期72-79,共8页
Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which ... Microstructure and tensile properties of TC21 titanium alloy after near-isothermal forging with different parameters plus solution treatment and aging were investigated. It is found that the residual β matrix, which was strengthened by fine secondary α platelets forming during aging, exists in all the samples; while primary equiaxed α phase, bent lamellar α phase and α plates are simultaneously or individually present in one sample. The strength of alloy increases proportionally with increasing the content of residual β matrix, which is the result of increasing α/β interphase boundary. The plasticity of alloy has a downward trend as the content of residual β matrix increases. This attributes to the increase of fine secondary α platelets, which are cut by dislocations during the deformation. Additionally, coarse α plates with long axis parallel to the maximum resolved shear stress(MRSS) also reduce the plasticity of TC21 alloy. 展开更多
关键词 TC21 titanium alloy near-isothermal forging MICROSTRUCTURE α phase morphology residual β matrix tensile properties
下载PDF
Simulated and experimental investigation on discontinuous dynamic recrystallization of a near-α TA15 titanium alloy during isothermal hot compression in βsingle-phase field 被引量:5
9
作者 武川 杨合 李宏伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1819-1829,共11页
A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleati... A cellular automaton(CA) modeling of discontinuous dynamic recrystallization(DDRX) of a near-α Ti-6Al-2Zr-1Mo-1V(TA15) isothermally compressed in the β single phase field was presented.In the CA model,nucleation of the β-DDRX and the growth of recrystallized grains(re-grains) were considered and visibly simulated by the CA model.The driving force of re-grain growth was provided by dislocation density accumulating around the grain boundaries.To verify the CA model,the predicted flow stress by the CA model was compared with the experimental data.The comparison showed that the average relative errors were10.2%,10.1%and 6%,respectively,at 1.0,0.1 and 0.01 s^-1 of 1020 ℃,and were 10.2%,11.35%and 7.5%,respectively,at 1.0,0.1and 0.01 s^-1 of 1050 ℃.The CA model was further applied to predicting the average growth rate,average re-grain size and recrystallization kinetics.The simulated results showed that the average growth rate increases with the increasing strain rate or temperature,while the re-grain size increases with the decreasing strain rate;the volume fraction of recrystallization decreases with the increasing strain rate or decreasing temperature. 展开更多
关键词 discontinuous dynamic recrystallization cellular automaton dislocation density evolution recrystallization kinetics TA15 titanium alloy
下载PDF
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters 被引量:3
10
作者 Tao Chen Jiaqiang Liu +3 位作者 Gang Liu Hui Xiao Chunhui Li Xianli Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期219-229,共11页
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing ineffici... Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness.Nonetheless,these properties also cause general problems in the machining,such as processing inefficiency,serious wear,poor workpiece face quality,etc.Aiming at the above problems,this paper carried out a comparative experimental study on titanium alloy milling based on the CAMCand BEMC.The variation law of cutting force and wear morphology of the two tools were obtained,and the wear mechanism and the effect of wear on machining quality were analyzed.The conclusion is that in contrast with BEMC,under the action of cutting thickness thinning mechanism,the force of CAMC was less,and its fluctuation was more stable.The flank wear was uniform and near the cutting edge,and the wear rate was slower.In the early period,the wear mechanism of CAMC was mainly adhesion.Gradually,oxidative wear also occurred with milling.Furthermore,the surface residual height of CAMC was lower.There is no obvious peak and trough accompanied by fewer surface defects. 展开更多
关键词 Circular-arc milling cutter titanium alloy Ball-end milling cutter Surface quality Milling force Tool wear Machining quality
下载PDF
Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy 被引量:2
11
作者 Tian-yu Liu Kun Shi +6 位作者 Jun Zhao Shi-bing Liu You-wei Zhang Hong-yu Liu Tian-yi Liu Xiao-ming Chen Xin-min Mei 《China Foundry》 SCIE CAS CSCD 2023年第1期49-56,共8页
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ... Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity. 展开更多
关键词 hot isostatic pressing processing parameters Ti60 titanium alloy DEFECTS composition uniformity microstructure mechanical properties
下载PDF
Direct ink writing to fabricate porous acetabular cups from titanium alloy 被引量:1
12
作者 Naima Valentin Weijian Hua +3 位作者 Ashish K.Kasar Lily Raymond Pradeep L.Menezes Yifei Jin 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第2期121-135,共15页
Acetabular cups,which are among themost important implants in total hip arthroplasty,are usually made from titanium alloys with high porosity and adequate mechanical properties.The current three-dimensional(3D)printin... Acetabular cups,which are among themost important implants in total hip arthroplasty,are usually made from titanium alloys with high porosity and adequate mechanical properties.The current three-dimensional(3D)printing approaches to fabricate customized acetabular cups have some inherent disadvantages such as high cost and energy consumption,residual thermal stress,and relatively low efficiency.Thus,in this work,a direct ink writing method was developed to print a cup structure at room temperature,followed by multi-step heat treatment to form microscale porous structure within the acetabular cup.Our method is facilitated by the development of a self-supporting titanium-6 aluminum-4 vanadium(Ti64)ink that is composed of Ti64 particles,bentonite yield-stress additive,ultraviolet curable polymer,and photo-initiator.The effects of Ti64 and bentonite concentrations on the rheological properties and printability of inks were systematically investigated.Moreover,the printing conditions,geometrical limitations,and maximum curing depth were explored.Finally,some complex 3D structures,including lattices with different gap distances,honeycomb with a well-defined shape,and an acetabular cup with uniformly distributed micropores,were successfully printed/fabricated to validate the effectiveness of the proposed method. 展开更多
关键词 Acetabular cup Direct ink writing titanium alloy BENTONITE Heat treatment
下载PDF
Effect of duplex aging on microstructure and mechanical properties of near-βtitanium alloy processed by isothermal multidirectional forging 被引量:4
13
作者 Chang-jiang ZHANG Xi JIANG +5 位作者 Zhi-dan LÜ Hong FENG Shu-zhi ZHANG Ying XU Muhammad Dilawer HAYAT Peng CAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第4期1159-1168,共10页
The effects of sub-transus(α+β)annealing treatment(ST),followed by single aging(SA)or duplex aging(DA)on the microstructural evolution and mechanical properties of near-βTi-4Al-1Sn-2Zr-5Mo-8V-2.5Cr(mass fraction,%)... The effects of sub-transus(α+β)annealing treatment(ST),followed by single aging(SA)or duplex aging(DA)on the microstructural evolution and mechanical properties of near-βTi-4Al-1Sn-2Zr-5Mo-8V-2.5Cr(mass fraction,%)alloy were investigated using optical microscopy,scanning electron microscopy,and transmission electron microscopy.The results show that the finer secondaryαphase precipitates in the alloy after DA than SA(e.g.,149 nm for SA and 69 nm for DA,both after ST at 720℃).The main reason is that the pre-aging step(300℃)in the DA process leads to the formation of intermediateωphase nanoparticles,which assist in the nucleation of the acicular secondaryαphase precipitates.In addition,the strength of the alloy after DA is higher than that of SA at the specific ST temperature.A good combination is achieved in the alloy subjected to ST at 750℃,followed by DA(UTS:1450 MPa,EL:3.87%),which is due to the precipitation of nanoscale secondaryαphase by DA.In conclusion,DA is a feasible process for this new near-βtitanium alloy. 展开更多
关键词 new near-βtitanium alloy multidirectional forging annealing treatment duplex aging ω-assistedαnucleation microstructure mechanical properties
下载PDF
α″phase-assisted nucleation to obtain ultrafineαprecipitates for designing high-strength near-βtitanium alloys 被引量:5
14
作者 Zhen-yu WANG Li-bin LIU +3 位作者 Di WU Li-gang ZHANG Wan-lin WANG Ke-chao ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2681-2696,共16页
The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can ... The diffusion-multiple method was used to determine the composition of Ti−6Al−4V−xMo−yZr alloy(0.45<x<12,0.5<y<14,wt.%),which can obtain an ultrafine α phase.Results show that Ti−6Al−4V−5Mo−7Zr alloy can obtain an ultrafineαphase by using the α″phase assisted nucleation.The bimodal microstructure obtained with the heat-treatment process can confer the alloy with a good balance between the strength and plasticity.The deformation mechanism is the dislocation slip and the{1101}twinning in the primary α phase.The strengthening mechanism is α/β interface strengthening.The interface of(0001)α/(110)β has a platform−step structure,whereas(1120)α/(111)βinterface is flat with no steps. 展开更多
关键词 alloy design high-strength titanium alloy α″phase α/βinterface twin deformation
下载PDF
Effect of solution plus aging heat treatment on microstructural evolution and mechanical properties of near-β titanium alloy 被引量:22
15
作者 Chuan WU Mei ZHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期997-1006,共10页
The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show ... The microstructural evolution, mechanical properties and fracture mechanism of a Ti.5Al.5Mo.5V.3Cr.1Zr (Ti-55531) alloy after solution (760.820℃) plus aging (580.640℃) treatments were investigated. The results show that the volume fraction of the primary α(αp) phase decreases with the increase of solution temperature, and the length of the secondary α phase (αs) decreases while its width increases with the increase of aging temperature. Yield and tensile strengths decrease with the increase of solution temperature, while increase with the increase of aging temperature. A good balance of tensile strength and ductility of the alloy is obtained under solution of 800℃ for 2 h plus aging of 640℃ for 8 h, in which the tensile strength is 1434 MPa and the elongation is 7.7%. The coarsening αs phase makes crack propagation paths deflected and tortuous, which increases the crack propagation resistance and improves the ductility and fracture toughness. 展开更多
关键词 Ti.5Al.5Mo.5V.3Cr.1Zr titanium alloy hot treatment SOLUTION AGING microstructural evolution mechanical properties fracture mechanism
下载PDF
Flow Characteristics Analysis of TC18 Titanium Alloy during Hot Deformation Based on Phase Transformation
16
作者 SUN Tao TENG Haihao +2 位作者 JIANG Xiaojuan TENG Shuman ZHOU Jie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1418-1425,共8页
An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium ... An accurate flow stress model was established by considering the parameters of strain rate,strain and temperature as well asβ→a+βphase transformation in order to develop the plastic forming theory of TC18 titanium alloy.Firstly,the phase transition kinetics of TC18 titanium alloy during isothermal and continuous cooling at 1073 and 1273 K was studied by thermodynamic calculation,meanwhile,the relationship of volume fraction of phase transition with temperature and time was obtained.Constitutive models were calculated by investigating flow behaviors under hot compression tests with the strain rates of 0.001-1s^(-1) and temperatures of 973-1223 K in the singleβand a+βregions in TC18 titanium alloy,respectively.By combining the phase transformation dynamic kinetics with constitutive models,an accurate flow stress model was established,providing theoretical basis and data support for the hot forging of TC18 titanium alloy. 展开更多
关键词 constitutive modeling TC18 titanium alloy phase transformation flow stress
原文传递
Selective laser melted near-beta titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe:Microstructure and mechanical properties 被引量:5
17
作者 HUANG Hua-long LI Dan +4 位作者 CHEN Chao LI Rui-di ZHANG Xiao-yong LIU Shi-chao ZHOU Ke-chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第6期1601-1614,共14页
In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy... In this work,a near-beta Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy was fabricated by selective laser melting(SLM),and the microstructure evolution together with the mechanical properties was studied.The as-fabricated alloy showed columnarβgrains spreading over multiple layers and paralleling to the building direction.The distinct microstructure of as-fabricated alloy was composed of near-β(more than 98.1%)with a submicron cellular structure.Different SLM processing parameters such as hatch spacing could affect the microstructure of as-fabricated alloy,which could thus further significantly affect the mechanical properties of as-fabricated alloy.In addition,the as-fabricated alloy with the distinct microstructure exhibits yield strength of 818 MPa combined with elongation of more than 19%,which shows that SLM is a potential technology for manufacturing near-beta titanium components. 展开更多
关键词 selective laser melting Ti-5Al-5Mo-5V-1Cr-1Fe near-βandβ-titanium alloy cellular structure PRECIPITATION
下载PDF
Effect of Solution-ECAP-Aging Treatment on the Microstructure and Properties of TB8 Titanium Alloy
18
作者 陈枫华 许晓静 +3 位作者 LIU Yangguang HU Chaoxing CAO Bin BAI Xiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期669-676,共8页
The microstructure and mechanical properties of the TB8 titanium alloy were controlled by a secondary processing technology of solution-equal channel angular pressing(ECAP)-aging treatment,which combined strong plasti... The microstructure and mechanical properties of the TB8 titanium alloy were controlled by a secondary processing technology of solution-equal channel angular pressing(ECAP)-aging treatment,which combined strong plastic deformation with heat treatment. The effects of ECAP and heat treatment on the microstructure and properties of the titanium alloy were systematically investigated by optical microscopy(OM), scanning electron microscopy(SEM), hardness tests, and tensile property analysis. The results indicate that the metallographic structure without ECAP treatment is mainly equiaxed β-phase, while that after ECAP treatment is equiaxed β-phase with grain fragmentation, slip bands, and new small grains. After 850 ℃ solutionECAP-520 ℃ aging treatment, the titanium alloy has the smallest grain size, while the directionality of tissue growth along the ECAP direction is the most apparent. Under the same solution-aging conditions, the hardness of the titanium alloy increases from 431.5 to 531.2 HV compared to that without ECAP treatment, i e, increases by 23.11%, and the tensile strength increases from 1 045.30 to 1 176.25 MPa, i e, increases by 12.5%. 展开更多
关键词 equal channel angular pressing heat treatment TB8 titanium alloys MICROSTRUCTURE mechanical properties
原文传递
Grinding Characteristics of MoS_(2)-Coated Brazed CBN Grinding Wheels in Dry Grinding of Titanium Alloy
19
作者 Junshuai Zhao Biao Zhao +4 位作者 Wenfeng Ding Bangfu Wu Ming Han Jiuhua Xu Guoliang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期43-55,共13页
As an important green manufacturing process,dry grinding has problems such as high grinding temperature and insufficient cooling capacity.Aiming at the problems of sticking and burns in dry grinding of titanium alloys... As an important green manufacturing process,dry grinding has problems such as high grinding temperature and insufficient cooling capacity.Aiming at the problems of sticking and burns in dry grinding of titanium alloys,grinding performance evaluation of molybdenum disulfide(MoS_(2))solid lubricant coated brazed cubic boron carbide(CBN)grinding wheel(MoS_(2)-coated CBN wheel)in dry grinding titanium alloys was carried out.The lubrication mechanism of MoS_(2)in the grinding process is analyzed,and the MoS_(2)-coated CBN wheel is prepared.The results show that the MoS_(2)solid lubricant can form a lubricating film on the ground surface and reduce the friction coefficient and grinding force.Within the experimental parameters,normal grinding force decreased by 42.5%,and tangential grinding force decreased by 28.1%.MoS_(2)lubricant can effectively improve the heat dissipation effect of titanium alloy grinding arc area.Compared with common CBN grinding wheel,MoS_(2)-coated CBN wheel has lower grinding temperature.When the grinding depth reaches 20μm,the grinding temperature decreased by 30.5%.The wear of CBN grains of grinding wheel were analyzed by mathematical statistical method.MoS_(2)lubricating coating can essentially decrease the wear of grains,reduce the adhesion of titanium alloy chip,prolong the service life of grinding wheel,and help to enhance the surface quality of workpiece.This research provides high-quality and efficient technical support for titanium alloy grinding. 展开更多
关键词 titanium alloy Dry grinding MoS_(2)-coated CBN wheel Grinding wheel wear
下载PDF
Effect of yttrium on microstructure and mold filling capacity of a near-α high temperature titanium alloy 被引量:2
20
作者 Zhao Ertuan Chen Yuyong +2 位作者 Kong Fantao Zhang Changjiang Xiao Shulong 《China Foundry》 SCIE CAS 2012年第4期344-348,共5页
The addition of rare earth yttrium(Y) can improve the performances of high temperature titanium alloys,such as the tensile ductility,thermal stability and creep property,etc.However,few studies on the effect of Y on t... The addition of rare earth yttrium(Y) can improve the performances of high temperature titanium alloys,such as the tensile ductility,thermal stability and creep property,etc.However,few studies on the effect of Y on the castability of titanium alloys have been carried out,which is significant to fabrication of thin-walled complex titanium castings by investment casting.In this study,the microstructure and mold filling capacity of a Ti-1100 alloy with different Y additions(0,0.1wt.%,0.3wt.%,0.5wt.% and 1.0wt.%) were investigated systematically through investment casting experiments,and the casting experiments were carried out in a centrifugal titanium casting machine.The microstructures of the alloy were observed via the optical microscopy,scanning electron microscopy and transmission electron microscopy.The mold filling capacity was tested by using of a grid pattern and was evaluated by the number of segments completely filled by the cast alloy.The results indicate that the grain size is decreased and the mold filling capacity is improved significantly with increasing the addition of Y from 0 to 1.0wt.%.The average primary grain size of Ti-1100 alloy is reduced from 250 μm to 50 μm and the mold filling capacity is increased from 61.5% to 100%.Considering the potential harmful effect on tensile properties of titanium alloys due to high concentrations of Y,it is suggested that Y addition should be about 0.3wt.%. 展开更多
关键词 high temperature titanium alloy YTTRIUM mold filling capacity investment casting
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部