期刊文献+
共找到475篇文章
< 1 2 24 >
每页显示 20 50 100
A Novel Neighbor-Preferential Growth Scale-Free Network Model and its Properties 被引量:1
1
作者 Yongshang Long Zhen Jia 《Communications and Network》 2017年第2期111-123,共13页
In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its... In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network. 展开更多
关键词 NETWORK model neighbor-Preferential SCALE-FREE SMALL-WORLD
下载PDF
邻近木多样性与竞争对天然云冷杉林树木生长的影响
2
作者 杜宇 杨华 +2 位作者 贺丹妮 陈庆国 张晓红 《北京林业大学学报》 CAS CSCD 北大核心 2024年第8期111-121,共11页
【目的】探究天然云冷杉林邻近木多样性、竞争强度对林木生长的影响,为云冷杉林结构化经营和管理提供科学依据。【方法】选取长白山天然云冷杉林2015、2018年两期固定样地调查数据,基于结构方程模型分析邻近木多样性、竞争与树木生长的... 【目的】探究天然云冷杉林邻近木多样性、竞争强度对林木生长的影响,为云冷杉林结构化经营和管理提供科学依据。【方法】选取长白山天然云冷杉林2015、2018年两期固定样地调查数据,基于结构方程模型分析邻近木多样性、竞争与树木生长的关系。【结果】(1)研究区内天然云冷杉林的邻近木树种、径阶、树高多样性指数均集中在1.04处,3个多样性指数整体上分布均匀,树种混交度高,林分结构复杂。(2)结构方程模型中,树种、径阶、树高3个邻近木多样性指数和竞争指数对材积生长量的总影响系数分别为-0.001、0.166、0.073和-0.489,结果表明竞争是影响林木生长的关键因素。(3)径阶和树高多样性的增加对生长量均为正面影响,其中径阶多样性为直接影响,树高多样性为间接影响;树种多样性表现为直接的负面影响与间接的正面影响,总体为负面影响;此外,树种多样性的提高可以减少林木间的竞争强度,树高多样性的提高可能会导致林分结构的分化,进而促进林分中林木个体的生长。(4)研究区内林木的生长压力可能多来自于同径级林木,小径级林木生长状况较差且竞争压力较大,大中径级林木与之相反。【结论】择伐同径级或相近径级林木,同时提高林分内的径阶、树高多样性水平,可以降低林木竞争水平,促进林木个体生长,进而提高云冷杉林林分生产力。 展开更多
关键词 森林管理 采伐 结构方程模型 邻近木多样性指数 竞争 林木生长
下载PDF
考虑近邻度值之和的城市轨道网络抗毁性研究
3
作者 李淑庆 宋易宵 钟国剑 《系统仿真学报》 CAS CSCD 北大核心 2024年第9期2127-2136,共10页
为解决城市轨道交通站点或线路失效引发的网络级联瘫痪问题,考虑了网络节点一阶邻域的影响作用,基于非线性容量负载模型,提出了负载分配阻抗系数,并建立了考虑近邻度值之和的非线性容量负载优化模型,通过优化负载结构来调整节点在负载... 为解决城市轨道交通站点或线路失效引发的网络级联瘫痪问题,考虑了网络节点一阶邻域的影响作用,基于非线性容量负载模型,提出了负载分配阻抗系数,并建立了考虑近邻度值之和的非线性容量负载优化模型,通过优化负载结构来调整节点在负载重分配时的备择概率,减少级联过程中节点的失效数,提高网络抗毁性。以重庆市轨道网络为实例应用,仿真分析网络在两种模型下的抗毁性。结果表明:优化模型中负载容忍系数的增大对网络抗毁性的改善效果更显著;优化模型中节点的负载分配阻抗系数越大,节点在负载重分配时的备择概率越低,越不容易发生级联过载。 展开更多
关键词 轨道网络 非线性容量负载模型 近邻度值之和 负载分配阻抗系数 抗毁性
原文传递
坝肩岩体质量LDA-KNN分类模型 被引量:1
4
作者 荀鹏 李娟 +2 位作者 魏玉峰 李常虎 范文东 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期281-290,302,共11页
工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出... 工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出发,选择岩体完整性系数(K v)、结构面间距(D)、岩石质量指标(RQD)等合适的评价指标,通过引入LDA(Linear Discriminant Analysis)降维方法和K近邻分析(K-Nearest-Neighbor,KNN)相结合的多分类模型,实现了岩体的非线性分级预测。通过定性定量相结合实现了岩体多因素,多指标的综合分级,并解决了多指标判断时信息冗余,复杂程度高的问题。与其他判别方案相比较,模型得出的结果准确率高,符合工程实际,减少了人为因素的影响,体现出较强的预测判别能力。该研究为水电站大坝坝肩处的平硐岩体质量划分提出了一种可行的预测方案。 展开更多
关键词 岩体结构 岩体质量分级 线性降维 K近邻算法 分类模型
下载PDF
RM-RT^(2)NI:融合评论时效与可信近邻影响力的推荐模型
5
作者 韩志耕 周婷 +2 位作者 陈耿 付纯硕 陈健 《计算机科学》 CSCD 北大核心 2024年第S01期700-706,共7页
基于矩阵分解的推荐模型虽然能够处理高维评分数据,但容易遭受评分数据稀疏性的困扰。基于评分和评论的推荐模型通过外加隐藏在评论中的用户偏好与物品属性信息,缓解了评分数据的稀疏性,但在特征提取时大多没有关注评论时效性和可信近... 基于矩阵分解的推荐模型虽然能够处理高维评分数据,但容易遭受评分数据稀疏性的困扰。基于评分和评论的推荐模型通过外加隐藏在评论中的用户偏好与物品属性信息,缓解了评分数据的稀疏性,但在特征提取时大多没有关注评论时效性和可信近邻影响力,无法获得更丰富的用户和物品特征。为进一步提高推荐精度,提出了融合评论时效与可信近邻影响力的推荐模型RM-RT^(2)NI。基于评分矩阵,该模型使用矩阵分解提取了用户偏好和物品属性的浅层特征,利用云模型和修正的用户相似度评估模型和新构建的信度评估模型提取出可信近邻影响力;基于评论文本,该模型利用BERT模型获得每条评论的隐表达,利用双向GRU提取评论间的联系,利用新构建的融合时间因子的注意力机制识别各评论的时效贡献度,以获取用户和物品的深层特征。在此基础上,将用户浅层特征、深层特征以及可信近邻影响力特征融合成用户特征,将物品浅层特征和深层特征融合成物品特征,并将它们输入全连接神经网络以预测用户-物品评分。在5组公开数据集上对RM-RM-RT^(2)NI的推荐性能进行了实验评估,结果显示,与7个基线模型相比,RM-RT^(2)NI具有更高的评分预测精度,且RMSE平均降低了3.0657%。 展开更多
关键词 推荐模型 评分矩阵 评论文本 评论时效 可信近邻影响力 多特征融合
下载PDF
ML组合的CYGNSS海面风速反演质量控制模型
6
作者 张云 赵星宇 +3 位作者 杨树瑚 孙聪 韩彦岭 尹继伟 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期20-29,共10页
卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出... 卷积神经网络(CNN)可用于气旋全球导航卫星系统(CYGNSS)的海面风速反演。虽然在模型训练前设置了质量控制指标来检测和削弱CYGNSS的异常观测数据,但CYGNSS观测数据中仍存在异常值导致模型反演精度降低,甚至出现错误反演结果。因此,提出一种基于机器学习(ML)组合的海面风速反演模型。在基于CNN回归模型的CYGNSS反演海面风速基础上,ML分类模型生成CNN回归结果的质量标志位,该标志位可以检测并删除CNN回归结果的异常值,进一步提高风速反演结果的数据质量,ML分类模型能够更好地考虑各种数据误差之间的相互作用,而不是单独使用每个条件的阈值,以达到更优的海面风速反演精度的效果。实验对比了Logistic回归(LR)、决策树(DT)、朴素贝叶斯模型、K最邻近(KNN)算法、神经网络(NN)模型、支持向量机(SVM)算法等6个分类模型,其中,基于KNN算法的分类模型对风速反演质量控制的效果最优。所提风速反演组合模型显著提高了反演结果的精度,在0~20 m/s区间内,异常样本过滤率为81.27%,在所有被过滤的数据中,过滤正确率为86.03%;风速反演误差的均方根误差从无ML分类模型的1.7 m/s降低到有ML分类模型的1.44 m/s,其中,训练样本为0~10 m/s的反演结果精度提升效果较为明显,证明了所提风速反演组合模型对风速质量控制的有效性。 展开更多
关键词 气旋全球导航卫星系统 风速反演 质量控制 机器学习组合模型 卷积神经网络 K最邻近算法
原文传递
结合最近邻图模型的稀疏ISAR成像方法
7
作者 胡长雨 陈春风 +3 位作者 易文忆 董宇宸 李晖 汪玲 《电子学报》 EI CAS CSCD 北大核心 2024年第1期170-180,共11页
逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)稀疏成像方法可提供图像对比度高、旁瓣干扰少的成像结果 .稀疏成像以场景或目标散射率分布具有稀疏性为前提,待成像目标场景的稀疏特性决定了最终成像质量. ISAR目标场景的自然... 逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)稀疏成像方法可提供图像对比度高、旁瓣干扰少的成像结果 .稀疏成像以场景或目标散射率分布具有稀疏性为前提,待成像目标场景的稀疏特性决定了最终成像质量. ISAR目标场景的自然稀疏特性着重刻画点状特征,变换域稀疏表示可增强目标图像的纹理等通用特征.通过学习获得的稀疏变换字典,可自适应于待成像的ISAR目标场景,找到面向ISAR目标图像块的特有稀疏表示.但是,图像块的特有稀疏表示中忽略了待成像目标场景中目标的几何特征信息.最近邻图模型可建立给定数据的几何特征描述算子,刻画出给定数据的几何特征信息.本文利用最近邻图模型来刻画待成像目标场景中目标的几何特征信息,并映射到待成像目标场景的特有稀疏表示中;提出结合最近邻图模型的ISAR稀疏成像方法,用于不同类别实测ISAR数据成像.相比已有的ISAR稀疏成像方法,所提成像方法可获得目标轮廓更清晰的成像结果,成像所需时间平均减少10.4%. 展开更多
关键词 逆合成孔径雷达 稀疏成像 最近邻图模型 稀疏表示 字典学习
下载PDF
面向城市轨道交通智能运维的数据耦合性与独立一致性研究
8
作者 倪弘韬 胡佳乔 +2 位作者 吴强 李楠 陈君林 《城市轨道交通研究》 北大核心 2024年第5期6-10,共5页
[目的]智能运维背景下,现有算法准确度低,导致虚警率高,因此有必要开展列车运营数据的耦合性分析与独立一致性研究。[方法]从统计和数据驱动的角度对耦合性与独立一致性进行定义;根据加速度绝对值变化率将列车运行状态分为4个阶段:静止... [目的]智能运维背景下,现有算法准确度低,导致虚警率高,因此有必要开展列车运营数据的耦合性分析与独立一致性研究。[方法]从统计和数据驱动的角度对耦合性与独立一致性进行定义;根据加速度绝对值变化率将列车运行状态分为4个阶段:静止、平稳运行、起动加速及制动减速,并分别生成对应数据切片综合分位图、相关系数等方法;对牵引系统、制动系统累计正线运营数据进行分析,量化系统间的耦合关系;通过构建线性回归模型、支持向量机模型、LightGBM模型和K-近邻模型对于数据进行解耦处理,使牵引制动系统数据呈现正态性,相关变量服从独立性与一致性,以满足联合条件概率分布的前置条件。[结果及结论]数据解耦操作能够提升系统间原始数据的独立一致性;从工程实用角度出发,LightGBM模型在实时与离线状态下表现出最优的性能,在所有量化分析中均取得了50%及以上的优化率;采用解耦后的数据,能够在故障样本较少或者缺失的情况下,实现对潜在故障的预警功能,能有效降低智能运维的虚警率,同时提升故障预测的准确性。 展开更多
关键词 轨道交通 智能运维 故障预警 支持向量机 LightGBM模型 K-近邻模型
下载PDF
基于近邻点重加权的点云特征线提取算法 被引量:1
9
作者 孟德信 赖春强 +1 位作者 樊鹏 张红萍 《兵工自动化》 北大核心 2024年第3期72-73,共2页
针对3维点云模型特征线提取存在断裂、不完整问题,提出一种基于近邻点重加权的点云特征线提取算法。算法分为提取特征点和特征点连接成线2个环节,在特征点提取环节,引入近邻重加权局部质心算子获取特征点集,通过欧式最小生成树构建特征... 针对3维点云模型特征线提取存在断裂、不完整问题,提出一种基于近邻点重加权的点云特征线提取算法。算法分为提取特征点和特征点连接成线2个环节,在特征点提取环节,引入近邻重加权局部质心算子获取特征点集,通过欧式最小生成树构建特征线。实验结果表明:采用近邻重加权局部质心算法进行特征点提取,跟传统基于曲率的算法相比其结果更加准确和稳健,能有效提取点云模型的几何特征。 展开更多
关键词 点云模型 特征线提取 近邻重加权局部质心
下载PDF
基于t⁃SNE降维方法的滚动轴承剩余寿命预测
10
作者 钟建华 黄聪 +1 位作者 钟舜聪 肖顺根 《机械强度》 CAS CSCD 北大核心 2024年第4期969-976,共8页
由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法。首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(... 由于实际工况下的轴承退化数据有限,无法获得足够的退化数据来训练神经网络,在深度学习网络中很难得到好的预测结果,所以提出一种新的结合机器学习和统计数据驱动的方法。首先对原始振动信号做特征提取,通过集合经验模态分解奇异值分解(Ensemble Empirical Mode Decompositiont Singular Value Decomposition,EEMD+SVD)得到数十维特征,加上剩余寿命预测常用的诸如峭度、均值等有效特征,利用决策树筛选出15维特征;将所筛选特征进行双指数拟合并通过t分布随机近邻嵌入(t⁃distributed Stochastic Neighbor Embedding,t⁃SNE)将退化信号降维成线性趋势。线性退化趋势在预测上相比于指数趋势有更好的泛化性,同时预测准确度相比于指数模型支持向量回归(Support Vector Regression,SVR)和深度信念网络(Deep Belief Network,DBN)都有较高的提升。 展开更多
关键词 特征提取 轴承 剩余寿命预测 双指数模型 t⁃SNE
下载PDF
基于共同邻居数的重要节点发现算法
11
作者 盛家烨 《计算机与现代化》 2024年第3期115-121,共7页
识别重要节点一直是复杂网络下的热点问题之一,因为识别出的重要节点能够在人群中的信息传播或疾病免疫中起到重要作用。目前大量的方法研究基本上是从节点的邻居信息、网络中的最短路径和节点删除这3个角度出发。现有的基于节点邻居信... 识别重要节点一直是复杂网络下的热点问题之一,因为识别出的重要节点能够在人群中的信息传播或疾病免疫中起到重要作用。目前大量的方法研究基本上是从节点的邻居信息、网络中的最短路径和节点删除这3个角度出发。现有的基于节点邻居信息的方法并没有对邻居节点的作用做出具体的说明,也没有对邻居节点的贡献在不同维度上进行区分。本文提出一种SCCN方法,该方法将邻居节点的贡献分为加强该节点所在的连接紧密的本地区域内的传播效果和扩展该节点所携带的信息至网络其他区域2个部分。通过标准SIR模型来评价SCCN的表现,并在8个真实网络上与度中心性、K-shell、介数中心性和PageRank比较。实验结果表明,SCCN具有更高的准确性和稳定性以及较低的时间复杂度,能够应用于大规模网络中。 展开更多
关键词 排序算法 大规模网络 共同邻居数 SIR模型
下载PDF
K最近邻算法在预制菜产业发展中的应用
12
作者 檀巧斌 《农产品加工》 2024年第10期113-116,共4页
预制菜是以一种或多种农产品为主要原料,通过标准化流程操作,经过预先加工或预先烹调而成,并最终进行预先包装的成品或半成品菜肴。近年来,该行业快速发展,K最近邻(K-nearest Neighbor,KNN)分类算法被视为基础的分类与回归方法之一,具... 预制菜是以一种或多种农产品为主要原料,通过标准化流程操作,经过预先加工或预先烹调而成,并最终进行预先包装的成品或半成品菜肴。近年来,该行业快速发展,K最近邻(K-nearest Neighbor,KNN)分类算法被视为基础的分类与回归方法之一,具有较为成熟的理论基础,是机器学习领域中被广泛应用的算法之一。综述了预制菜的发展史、分类、现状,最近邻算法基本原理及K最近邻算法模型在预制菜产业发展中的应用研究,以期对预制菜应用领域科研攻关的方向、产业的发展研究提供参考。 展开更多
关键词 预制菜 最近邻算法 K最近邻算法模型
下载PDF
基于对比学习和注意力机制的文本分类方法
13
作者 钱来 赵卫伟 《计算机工程》 CAS CSCD 北大核心 2024年第7期104-111,共8页
文本分类作为自然语言处理领域的基本任务,在信息检索、机器翻译和情感分析等应用中发挥着重要作用。然而大多数深度模型在预测时未充分考虑训练实例的丰富信息,导致学到的文本特征不够全面。为了充分利用训练实例信息,提出一种基于对... 文本分类作为自然语言处理领域的基本任务,在信息检索、机器翻译和情感分析等应用中发挥着重要作用。然而大多数深度模型在预测时未充分考虑训练实例的丰富信息,导致学到的文本特征不够全面。为了充分利用训练实例信息,提出一种基于对比学习和注意力机制的文本分类方法。首先,设计一种有监督对比学习训练策略,旨在优化模型对文本向量表征的检索,提高模型在推理过程中检索到的训练实例的质量;然后,构建注意力机制,对获取的训练文本特征进行注意力分布学习,聚焦关联性更强的相邻实例信息,获得更多隐含的相似特征;最后,将注意力机制与模型网络相结合,融合相邻的训练实例信息,增强模型提取多样性特征的能力,实现全局特征和局部特征的提取。实验结果表明,所提方法在卷积神经网络(CNN)、双向长短期记忆网络(Bi LSTM)、图卷积网络(GCN)、BERT和Ro BERTa等多个模型上都取得了显著的性能提升。以CNN模型为例,其在THUCNews数据集、今日头条数据集和搜狗数据集上宏F1值分别提高了4.15、6.2和1.92个百分点。因此,该方法也为文本分类任务提供了一种有效的解决方案。 展开更多
关键词 文本分类 深度模型 对比学习 近似最近邻算法 注意力机制
下载PDF
基于参考向量关联估计的离线多目标优化算法
14
作者 李睿 孙超利 张国晨 《计算机与数字工程》 2024年第9期2577-2582,共6页
很多实际工程和科学问题都是计算费时的多目标优化问题,这类问题中每个候选解的评价往往都非常费时,因此仅允许使用少量真实评价。论文采用离线数据驱动的进化算法求解计算费时多目标优化问题,以期节省优化时间。论文通过训练代理模型... 很多实际工程和科学问题都是计算费时的多目标优化问题,这类问题中每个候选解的评价往往都非常费时,因此仅允许使用少量真实评价。论文采用离线数据驱动的进化算法求解计算费时多目标优化问题,以期节省优化时间。论文通过训练代理模型来估计候选解的收敛性,采用最近邻样本估计候选解与参考向量的关联关系,减少了使用目标估值计算候选解与参考向量夹角大小所产生的误差累积。使用DTLZ测试集验证论文算法的有效性,论文算法与离线数据驱动的优化算法MS-RV以及三个经典在线数据驱动优化算法进行对比,实验结果表明论文提出的算法在保证性能的前提下,可以减少使用真实的评价次数。 展开更多
关键词 计算费时的多目标优化问题 代理模型 离线数据驱动优化 最近邻估计
下载PDF
基于机器学习的冠心病风险预测模型构建与比较
15
作者 岳海涛 何婵婵 +3 位作者 成羽攸 张森诚 吴悠 马晶 《中国全科医学》 CAS 北大核心 2025年第4期499-509,共11页
背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目... 背景冠状动脉粥样硬化性心脏病(以下简称冠心病)是全球重要的死亡原因之一。目前关于冠心病风险评估的研究在逐年增长。然而,在这些研究中常忽略了数据不平衡的问题,而解决该问题对于提高分类算法中识别冠心病风险的准确性至关重要。目的探索冠心病的影响因素,通过使用2种平衡数据的方法,基于5种算法建立冠心病风险相关的预测模型,比较这5种模型对冠心病风险的预测价值。方法基于2021年美国国家行为风险因素监测系统(BRFSS)横断面调查数据筛选出112606名研究对象的健康相关风险行为、慢性健康状况等24个变量信息,结局指标为自我报告是否患有冠心病并据此分为冠心病组和非冠心病组。通过进行单因素分析和逐步Logistic回归分析探索冠心病发生的影响因素并筛选出纳入预测模型的变量。随机抽取112606名受访者的10%(共计11261名),以8∶2的比例随机划分为训练与测试的数据集,采用随机过采样和合成少数过采样技术(SMOTE)两种过采样的方法处理不平衡数据,基于k最邻近算法(KNN)、Logistic回归、支持向量机(SVM)、决策树和XGBoost算法分别建立冠心病预测模型。结果两组年龄、性别、BMI、种族、婚姻状态、教育水平、收入水平、家里有几个孩子、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者、过去30 d内是否有体育锻炼、心理健康状况以及自我健康评价比较,差异有统计学意义(P<0.05)。逐步Logistic回归分析结果显示:年龄、性别、BMI、种族、教育水平、收入水平、是否被告知患高血压、是否被告知处于高血压前期、是否被告知患妊娠高血压、现在是否在服用高血压药物、是否被告知患有高脂血症、是否被告知患有糖尿病、吸烟情况、过去30 d内是否至少喝过1次酒、是否为重度饮酒者、是否为酗酒者以及自我健康评价为冠心病的影响因素(P<0.05)。风险模型构建的分析结果显示:k最邻近算法、Logistic回归、支持向量机、决策树和XGBoost采用SMOTE处理不平衡数据的总体分类精度分别为59.2%、67.4%、66.2%、69.2%和85.9%,召回率分别为75.2%、71.4%、70.5%、62.9%和34.8%,精确度分别为15.4%、18.2%、17.5%、17.6%和28.7%,F值分别为0.256、0.290、0.280、0.275和0.315,受试者工作特征曲线下面积分别为0.80、0.78、0.72、0.72和0.82;采用随机过采样处理不平衡数据的总体分类精度分别为62.5%、68.5%、69.0%、60.2%和70.1%,召回率分别为70.0%、69.5%、71.9%、69.0%和67.6%;精确度分别为15.8%、18.4%、19.1%、14.8%和19.0%,F值分别为0.258、0.291、0.302、0.244和0.297,受试者工作特征曲线下面积分别为0.80、0.77、0.72、0.72和0.83。结论本研究不仅确认了已知冠心病的影响因素,还发现了自我健康评价水平、收入水平和教育水平对冠心病具有潜在影响。在使用2种数据平衡方法后,5种算法的性能显著提高。其中XGBoost模型表现最佳,可作为未来优化冠心病预测模型的参考。此外,鉴于XGBoost模型的优异性能以及逐步Logistic回归的操作便捷和可解释性,推荐在冠心病风险预测模型中结合使用数据平衡后的XGBoost和逐步Logistic回归分析。 展开更多
关键词 冠心病 机器学习 风险预测模型 LOGISTIC回归 k最邻近算法 支持向量机 决策树 XGBoost
下载PDF
基于PCA降维的MNIST手写数字识别优化
16
作者 田春婷 《现代信息科技》 2024年第16期64-68,共5页
PCA数据降维技术广泛应用于数据降维和数据的特征提取,可以很大程度上降低算法的计算复杂度,提升程序运行效率。文章将MNIST原始数据集和对原始数据集进行PCA降维处理之后的数据集作为样本,分别采用K-邻近算法、决策树ID3算法、SVC分类... PCA数据降维技术广泛应用于数据降维和数据的特征提取,可以很大程度上降低算法的计算复杂度,提升程序运行效率。文章将MNIST原始数据集和对原始数据集进行PCA降维处理之后的数据集作为样本,分别采用K-邻近算法、决策树ID3算法、SVC分类模型,以及选取不同分类算法作为基础分类器的集成学习方法,实现手写数字识别。在对MNIST数据集进行PCA降维前后,以及不同分类算法和模型执行结果的时间复杂度与预测准确率进行比对与分析,进一步强化与优化手写数字识别准确率等各项指标。 展开更多
关键词 PCA降维 MNIST手写数字识别 K-邻近算法 决策树 SVC分类模型 集成学习
下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
17
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM ALGORITHM GAUSSIAN MIXTURE model K-Nearest neighbor K-MEANS ALGORITHM INITIALIZATION
下载PDF
基于邻居信息的无线传感网络节点覆盖优化方法 被引量:2
18
作者 张雪梅 张起贵 《传感技术学报》 CAS CSCD 北大核心 2023年第9期1478-1483,共6页
无线传感网络的冗余节点会导致网络节点覆盖不均匀,为了提升无线传感网络节点覆盖效果,提出基于邻居信息的无线传感网络节点覆盖优化方法。利用邻居信息获取网络节点与邻居节点的距离、能量及覆盖率,根据获取结果判断无线传感网络中是... 无线传感网络的冗余节点会导致网络节点覆盖不均匀,为了提升无线传感网络节点覆盖效果,提出基于邻居信息的无线传感网络节点覆盖优化方法。利用邻居信息获取网络节点与邻居节点的距离、能量及覆盖率,根据获取结果判断无线传感网络中是否存有冗余节点,若存有冗余,则需要对节点实施休眠处理,以此降低节点能耗。基于处理结果建立无线传感网络覆盖模型,令网络节点在网络中均匀分布,并采用粒子群算法优化模型,使粒子能够不断迭代更新自身位置及速度,达到网络节点覆盖率最大化的目的,实现网络节点覆盖优化。实验结果表明,所提方法的无线传感网络节点覆盖率和收敛性分别高达97%和98.4%,能够有效实现网络节点部署,确保无线传感网络节点覆盖效果。 展开更多
关键词 无线传感网络 节点覆盖优化 邻居信息 覆盖模型 粒子群算法
下载PDF
基于自适应伽马校正的异常驾驶行为检测方法 被引量:1
19
作者 艾青松 张皓喆 严俊伟 《计算机工程》 CAS CSCD 北大核心 2023年第9期279-286,共8页
针对低照度条件下重型卡车司机异常驾驶行为检测方法存在检测准确率低、检测速度慢等问题,结合图像自适应增强方法和轮廓定位检测思想,提出一种基于自适应伽马校正的异常驾驶行为检测方法。对传入视频图像进行自适应伽马校正,通过抑制... 针对低照度条件下重型卡车司机异常驾驶行为检测方法存在检测准确率低、检测速度慢等问题,结合图像自适应增强方法和轮廓定位检测思想,提出一种基于自适应伽马校正的异常驾驶行为检测方法。对传入视频图像进行自适应伽马校正,通过抑制噪声、改善暗部和提升信息熵来提高识别准确率。基于图像灰度值和信息熵对双阈值伽马函数进行自适应调节,从而获得更丰富的边缘信息和色彩信息。利用K-近邻背景建模法将驾驶员前景图像分离以确定检测区域,通过边缘检测进行驾驶员头部和手部轮廓识别,获得关键定位点间的欧氏距离,并进行异常驾驶行为判断。在此基础上,结合异常行为次数和时间阈值,解决环境干扰和图像噪声的问题。实验结果表明,与单尺度Retinex、多尺度Retinex以及自适应直方图均衡方法相比,所提方法在提高检测准确率的同时有效提高了检测速度,能在不同环境下有效检测异常驾驶行为。 展开更多
关键词 异常驾驶检测 关键点定位 伽马校正 边缘检测 K-近邻背景建模
下载PDF
k-NN METHOD IN PARTIAL LINEAR MODEL UNDER RANDOM CENSORSHIP 被引量:1
20
作者 QIN GENGSHENG (Department of Mathematics,Sichuan University, Chengdu 610064). 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1995年第3期275-286,共12页
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est... Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3). 展开更多
关键词 Partial linear model censored data class K method k-nearest neighbor weights
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部