Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect...Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.展开更多
The secondary solar heat gain,defined as the heat flows from glazing to indoor environment through longwave radiation and convection,grows with the increasing of glazing absorption.With the rapid development and appli...The secondary solar heat gain,defined as the heat flows from glazing to indoor environment through longwave radiation and convection,grows with the increasing of glazing absorption.With the rapid development and application of spectrally selective glazing,the secondary solar heat gain becomes the main way of glazing heat transfer and biggest proportion,and indicates it should not be simplified calculated conventionally.Therefore,a dynamic secondary solar heat gain model is developed with electrochromic glazing system in this study,taking into account with three key aspects,namely,optical model,heat transfer model,and outdoor radiation spectrum.Compared with the traditional K-Sc model,this new model is verified by on-site experimental measurements with dynamic outdoor spectrum and temperature.The verification results show that the root mean square errors of the interior and exterior glass surface temperature are 3.25°C and 3.33°C,respectively,and the relative error is less than 10.37%.The root mean square error of the secondary heat gain is 13.15 W/m2,and the dynamic maximum relative error is only 13.2%.The simulated and measured results have a good agreement.In addition,the new model is further extended to reveal the variation characteristics of secondary solar heat gain under different application conditions(including orientations,locations,EC film thicknesses and weather conditions).In summary,based on the outdoor spectrum and window spectral characteristics,the new model can accurately calculate the increasing secondary solar heat gain in real time,caused by spectrally selective windows,and will provide a computational basis for the evaluation and development of spectrally selective glazing materials.展开更多
Windows,as transparent intermediaries between the indoors and outdoors,have a significant impact on building energy consumption and indoor visual and thermal comfort.With the recent development of dynamic window struc...Windows,as transparent intermediaries between the indoors and outdoors,have a significant impact on building energy consumption and indoor visual and thermal comfort.With the recent development of dynamic window structures,especially various attachment technologies,the thermal,visual,and energy performances of windows have been significantly improved.In this research,a new dynamic transparent louver structure sandwiched within conventional double-pane windows is proposed,designed,optimized,and examined in terms of energy savings in different climates.The uniqueness of the proposed design is that it autonomously responds to the seasonal needs prompted by solar heat gain through the use of thermally deflected bimetallic elements.Moreover,by integrating spectral selective louvers into the system design,the dynamic structure enables strong solar infrared modulation with a little visible variation.The optical and thermal properties of the dynamic glazing structure support about 30%and 16%seasonal variations in solar heat gains and visible transmittance,respectively.Furthermore,the potential energy savings were explored via parametric energy simulations,which showed significant potential for heating and cooling energy savings.This proposed design demonstrates a simple smart dynamic glazing structure driven by seasonal temperature differences,with significant solar heat control capabilities and minor effects on the visible or visual quality of the glazing system.展开更多
基金National Natural Science Foundation of China(No.51478098)Innovation Foundation of Shanghai Education Commission,China(No.13ZZ054)
文摘Computational fluid dynamics( CFD) techniques are used to investigate effects of both wind direction and wind speed on net solar heat gain of south wall with internal insulation in winter.Results show that wind effect has a significant influence on the net solar heat gain,where the impact of wind direction is stronger than that of wind speed. For regions in lower reaches of the Yangtze River,difference of their average net solar heat gains( NSHGS) is about 20% due to various wind speeds and wind directions.Buildings in districts with a dominant wind direction of north achieve the highest solar energy utilization.
基金the National Natural Science Foundation of China(51808011)the Natural Science Foundation of Chongqing(2022NSCQ-MSX5521).
文摘The secondary solar heat gain,defined as the heat flows from glazing to indoor environment through longwave radiation and convection,grows with the increasing of glazing absorption.With the rapid development and application of spectrally selective glazing,the secondary solar heat gain becomes the main way of glazing heat transfer and biggest proportion,and indicates it should not be simplified calculated conventionally.Therefore,a dynamic secondary solar heat gain model is developed with electrochromic glazing system in this study,taking into account with three key aspects,namely,optical model,heat transfer model,and outdoor radiation spectrum.Compared with the traditional K-Sc model,this new model is verified by on-site experimental measurements with dynamic outdoor spectrum and temperature.The verification results show that the root mean square errors of the interior and exterior glass surface temperature are 3.25°C and 3.33°C,respectively,and the relative error is less than 10.37%.The root mean square error of the secondary heat gain is 13.15 W/m2,and the dynamic maximum relative error is only 13.2%.The simulated and measured results have a good agreement.In addition,the new model is further extended to reveal the variation characteristics of secondary solar heat gain under different application conditions(including orientations,locations,EC film thicknesses and weather conditions).In summary,based on the outdoor spectrum and window spectral characteristics,the new model can accurately calculate the increasing secondary solar heat gain in real time,caused by spectrally selective windows,and will provide a computational basis for the evaluation and development of spectrally selective glazing materials.
基金the NSF award:#2001207:CAREER:Understanding the Thermal and Optical Behaviors of the Near Infrared(NIR)-Selective Dynamic Glazing Structures.
文摘Windows,as transparent intermediaries between the indoors and outdoors,have a significant impact on building energy consumption and indoor visual and thermal comfort.With the recent development of dynamic window structures,especially various attachment technologies,the thermal,visual,and energy performances of windows have been significantly improved.In this research,a new dynamic transparent louver structure sandwiched within conventional double-pane windows is proposed,designed,optimized,and examined in terms of energy savings in different climates.The uniqueness of the proposed design is that it autonomously responds to the seasonal needs prompted by solar heat gain through the use of thermally deflected bimetallic elements.Moreover,by integrating spectral selective louvers into the system design,the dynamic structure enables strong solar infrared modulation with a little visible variation.The optical and thermal properties of the dynamic glazing structure support about 30%and 16%seasonal variations in solar heat gains and visible transmittance,respectively.Furthermore,the potential energy savings were explored via parametric energy simulations,which showed significant potential for heating and cooling energy savings.This proposed design demonstrates a simple smart dynamic glazing structure driven by seasonal temperature differences,with significant solar heat control capabilities and minor effects on the visible or visual quality of the glazing system.