期刊文献+
共找到3,513篇文章
< 1 2 176 >
每页显示 20 50 100
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
1
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Feature extraction for machine learning-based intrusion detection in IoT networks 被引量:1
2
作者 Mohanad Sarhan Siamak Layeghy +2 位作者 Nour Moustafa Marcus Gallagher Marius Portmann 《Digital Communications and Networks》 SCIE CSCD 2024年第1期205-216,共12页
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ... A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field. 展开更多
关键词 Feature extraction Machine learning network intrusion detection system IOT
下载PDF
Artificial Immune Detection for Network Intrusion Data Based on Quantitative Matching Method
3
作者 CaiMing Liu Yan Zhang +1 位作者 Zhihui Hu Chunming Xie 《Computers, Materials & Continua》 SCIE EI 2024年第2期2361-2389,共29页
Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune de... Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance. 展开更多
关键词 Immune detection network intrusion network data signature detection quantitative matching method
下载PDF
A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions
4
作者 Monirah Al-Ajlan Mourad Ykhlef 《Computers, Materials & Continua》 SCIE EI 2024年第11期2053-2076,共24页
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener... The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps. 展开更多
关键词 intrusion detection systems network security generative networks deep learning DATASET
下载PDF
Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System
5
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第7期1457-1490,共34页
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr... This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge. 展开更多
关键词 MACHINE-LEARNING Deep-Learning intrusion detection system security PRIVACY deep neural network NSL-KDD Dataset
下载PDF
Anomaly-Based Intrusion DetectionModel Using Deep Learning for IoT Networks
6
作者 Muaadh A.Alsoufi Maheyzah Md Siraj +4 位作者 Fuad A.Ghaleb Muna Al-Razgan Mahfoudh Saeed Al-Asaly Taha Alfakih Faisal Saeed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期823-845,共23页
The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly int... The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better. 展开更多
关键词 IOT anomaly intrusion detection deep learning sparse autoencoder convolutional neural network
下载PDF
Intrusion Detection Model Using Chaotic MAP for Network Coding Enabled Mobile Small Cells
7
作者 Chanumolu Kiran Kumar Nandhakumar Ramachandran 《Computers, Materials & Continua》 SCIE EI 2024年第3期3151-3176,共26页
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a... Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high. 展开更多
关键词 network coding small cells data transmission intrusion detection model hashed message authentication code chaotic sequence mapping secure transmission
下载PDF
APSO-CNN-SE:An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection
8
作者 Yunfei Ban Damin Zhang +1 位作者 Qing He Qianwen Shen 《Computers, Materials & Continua》 SCIE EI 2024年第10期567-601,共35页
The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things(IoT)networks.The proliferation of unknown attacks and related risks,such as zero-day attacks and Distributed... The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things(IoT)networks.The proliferation of unknown attacks and related risks,such as zero-day attacks and Distributed Denial of Service(DDoS)attacks triggered by botnets,have resulted in information leakage and property damage.Therefore,developing an efficient and realistic intrusion detection system(IDS)is critical for ensuring IoT network security.In recent years,traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic,and the excellent performance of deep learning techniques,as an advanced version of machine learning,has led to their widespread application in intrusion detection.In this paper,we propose an Adaptive Particle Swarm Optimization Convolutional Neural Network Squeeze-andExcitation(APSO-CNN-SE)model for implementing IoT network intrusion detection.A 2D CNN backbone is initially constructed to extract spatial features from network traffic.Subsequently,a squeeze-and-excitation channel attention mechanism is introduced and embedded into the CNN to focus on critical feature channels.Lastly,the weights and biases in the CNN-SE are extracted to initialize the population individuals of the APSO.As the number of iterations increases,the population’s position vector is continuously updated,and the cross-entropy loss function value is minimized to produce the ideal network architecture.We evaluated the models experimentally using binary and multiclassification on the UNSW-NB15 and NSL-KDD datasets,comparing and analyzing the evaluation metrics derived from each model.Compared to the base CNN model,the results demonstrate that APSO-CNNSE enhances the binary classification detection accuracy by 1.84%and 3.53%and the multiclassification detection accuracy by 1.56%and 2.73%on the two datasets,respectively.Additionally,the model outperforms the existing models like DT,KNN,LR,SVM,LSTM,etc.,in terms of accuracy and fitting performance.This means that the model can identify potential attacks or anomalies more precisely,improving the overall security and stability of the IoT environment. 展开更多
关键词 intrusion detection system internet of things convolutional neural network channel attention mechanism adaptive particle swarm optimization
下载PDF
Network Intrusion Traffic Detection Based on Feature Extraction
9
作者 Xuecheng Yu Yan Huang +2 位作者 Yu Zhang Mingyang Song Zhenhong Jia 《Computers, Materials & Continua》 SCIE EI 2024年第1期473-492,共20页
With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(... With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(IDS).However,both unsupervised and semisupervised anomalous traffic detection methods suffer from the drawback of ignoring potential correlations between features,resulting in an analysis that is not an optimal set.Therefore,in order to extract more representative traffic features as well as to improve the accuracy of traffic identification,this paper proposes a feature dimensionality reduction method combining principal component analysis and Hotelling’s T^(2) and a multilayer convolutional bidirectional long short-term memory(MSC_BiLSTM)classifier model for network traffic intrusion detection.This method reduces the parameters and redundancy of the model by feature extraction and extracts the dependent features between the data by a bidirectional long short-term memory(BiLSTM)network,which fully considers the influence between the before and after features.The network traffic is first characteristically downscaled by principal component analysis(PCA),and then the downscaled principal components are used as input to Hotelling’s T^(2) to compare the differences between groups.For datasets with outliers,Hotelling’s T^(2) can help identify the groups where the outliers are located and quantitatively measure the extent of the outliers.Finally,a multilayer convolutional neural network and a BiLSTM network are used to extract the spatial and temporal features of network traffic data.The empirical consequences exhibit that the suggested approach in this manuscript attains superior outcomes in precision,recall and F1-score juxtaposed with the prevailing techniques.The results show that the intrusion detection accuracy,precision,and F1-score of the proposed MSC_BiLSTM model for the CIC-IDS 2017 dataset are 98.71%,95.97%,and 90.22%. 展开更多
关键词 network intrusion traffic detection PCA Hotelling’s T^(2) BiLSTM
下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder
10
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
下载PDF
Hybrid Gaussian Network Intrusion Detection Method Based on CGAN and E-GraphSAGE
11
作者 Xinyi Liang Hongyan Xing +3 位作者 Wei Gu Tianhao Hou Zhiwei Ni Xinyi Wang 《Instrumentation》 2024年第2期24-35,共12页
The rapid development of the Internet of Things(IoT)and modern information technology has led to the emergence of new types of cyber-attacks.It poses a great potential danger to network security.Consequently,protectin... The rapid development of the Internet of Things(IoT)and modern information technology has led to the emergence of new types of cyber-attacks.It poses a great potential danger to network security.Consequently,protecting against network attacks has become a pressing issue that requires urgent attention.It is crucial to find practical solutions to combat such malicious behavior.A network intrusion detection(NID)method,known as GMCE-GraphSAGE,was proposed to meet the detection demands of the current intricate network environment.Traffic data is mapped into gaussian distribution,which helps to ensure that subsequent models can effectively learn the features of traffic samples.The conditional generative adversarial network(CGAN)can generate attack samples based on specified labels to create balanced traffic datasets.In addition,we constructed a communication interaction graph based on the connection patterns of traffic nodes.The E-GraphSAGE is designed to capture both the topology and edge features of the traffic graph.From it,global behavioral information is combined with traffic features,providing a solid foundation for classifying and detecting.Experiments on the UNSW-NB15 dataset demonstrate the great detection advantage of the proposed method.Its binary and multi-classification F1-score can achieve 99.36%and 89.29%,respectively.The GMCE-GraphSAGE effectively improves the detection rate of minority class samples in the NID task. 展开更多
关键词 network intrusion detection IOT deep learning
原文传递
An Intelligent SDN-IoT Enabled Intrusion Detection System for Healthcare Systems Using a Hybrid Deep Learning and Machine Learning Approach 被引量:1
12
作者 R Arthi S Krishnaveni Sherali Zeadally 《China Communications》 SCIE CSCD 2024年第10期267-287,共21页
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the... The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches. 展开更多
关键词 deep neural network healthcare intrusion detection system IOT machine learning software-defined networks
下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
13
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
下载PDF
A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection
14
作者 Chandraumakantham Om Kumar Sudhakaran Gajendran +2 位作者 Suguna Marappan Mohammed Zakariah Abdulaziz S.Almazyad 《Computers, Materials & Continua》 SCIE EI 2024年第10期471-501,共31页
The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure... The security of the wireless sensor network-Internet of Things(WSN-IoT)network is more challenging due to its randomness and self-organized nature.Intrusion detection is one of the key methodologies utilized to ensure the security of the network.Conventional intrusion detection mechanisms have issues such as higher misclassification rates,increased model complexity,insignificant feature extraction,increased training time,increased run time complexity,computation overhead,failure to identify new attacks,increased energy consumption,and a variety of other factors that limit the performance of the intrusion system model.In this research a security framework for WSN-IoT,through a deep learning technique is introduced using Modified Fuzzy-Adaptive DenseNet(MF_AdaDenseNet)and is benchmarked with datasets like NSL-KDD,UNSWNB15,CIDDS-001,Edge IIoT,Bot IoT.In this,the optimal feature selection using Capturing Dingo Optimization(CDO)is devised to acquire relevant features by removing redundant features.The proposed MF_AdaDenseNet intrusion detection model offers significant benefits by utilizing optimal feature selection with the CDO algorithm.This results in enhanced Detection Capacity with minimal computation complexity,as well as a reduction in False Alarm Rate(FAR)due to the consideration of classification error in the fitness estimation.As a result,the combined CDO-based feature selection and MF_AdaDenseNet intrusion detection mechanism outperform other state-of-the-art techniques,achieving maximal Detection Capacity,precision,recall,and F-Measure of 99.46%,99.54%,99.91%,and 99.68%,respectively,along with minimal FAR and Mean Absolute Error(MAE)of 0.9%and 0.11. 展开更多
关键词 Deep learning intrusion detection fuzzy rules feature selection false alarm rate ACCURACY wireless sensor networks
下载PDF
CNN Channel Attention Intrusion Detection SystemUsing NSL-KDD Dataset
15
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第6期4319-4347,共29页
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi... Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances. 展开更多
关键词 intrusion detection system(IDS) NSL-KDD dataset deep-learning MACHINE-LEARNING CNN channel Attention network security
下载PDF
A New Industrial Intrusion Detection Method Based on CNN-BiLSTM
16
作者 Jun Wang Changfu Si +1 位作者 Zhen Wang Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4297-4318,共22页
Nowadays,with the rapid development of industrial Internet technology,on the one hand,advanced industrial control systems(ICS)have improved industrial production efficiency.However,there are more and more cyber-attack... Nowadays,with the rapid development of industrial Internet technology,on the one hand,advanced industrial control systems(ICS)have improved industrial production efficiency.However,there are more and more cyber-attacks targeting industrial control systems.To ensure the security of industrial networks,intrusion detection systems have been widely used in industrial control systems,and deep neural networks have always been an effective method for identifying cyber attacks.Current intrusion detection methods still suffer from low accuracy and a high false alarm rate.Therefore,it is important to build a more efficient intrusion detection model.This paper proposes a hybrid deep learning intrusion detection method based on convolutional neural networks and bidirectional long short-term memory neural networks(CNN-BiLSTM).To address the issue of imbalanced data within the dataset and improve the model’s detection capabilities,the Synthetic Minority Over-sampling Technique-Edited Nearest Neighbors(SMOTE-ENN)algorithm is applied in the preprocessing phase.This algorithm is employed to generate synthetic instances for the minority class,simultaneously mitigating the impact of noise in the majority class.This approach aims to create a more equitable distribution of classes,thereby enhancing the model’s ability to effectively identify patterns in both minority and majority classes.In the experimental phase,the detection performance of the method is verified using two data sets.Experimental results show that the accuracy rate on the CICIDS-2017 data set reaches 97.7%.On the natural gas pipeline dataset collected by Lan Turnipseed from Mississippi State University in the United States,the accuracy rate also reaches 85.5%. 展开更多
关键词 intrusion detection convolutional neural network bidirectional long short-term memory neural network multi-head self-attention mechanism
下载PDF
Lightweight Intrusion Detection Using Reservoir Computing
17
作者 Jiarui Deng Wuqiang Shen +4 位作者 Yihua Feng Guosheng Lu Guiquan Shen Lei Cui Shanxiang Lyu 《Computers, Materials & Continua》 SCIE EI 2024年第1期1345-1361,共17页
The blockchain-empowered Internet of Vehicles(IoV)enables various services and achieves data security and privacy,significantly advancing modern vehicle systems.However,the increased frequency of data transmission and... The blockchain-empowered Internet of Vehicles(IoV)enables various services and achieves data security and privacy,significantly advancing modern vehicle systems.However,the increased frequency of data transmission and complex network connections among nodes also make them more susceptible to adversarial attacks.As a result,an efficient intrusion detection system(IDS)becomes crucial for securing the IoV environment.Existing IDSs based on convolutional neural networks(CNN)often suffer from high training time and storage requirements.In this paper,we propose a lightweight IDS solution to protect IoV against both intra-vehicle and external threats.Our approach achieves superior performance,as demonstrated by key metrics such as accuracy and precision.Specifically,our method achieves accuracy rates ranging from 99.08% to 100% on the Car-Hacking dataset,with a remarkably short training time. 展开更多
关键词 Echo state network intrusion detection system Internet of Vehicles reservoir computing
下载PDF
Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling
18
作者 Fei Wang Zhen Dong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2315-2329,共15页
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th... Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively. 展开更多
关键词 intrusion detection deep learning spiral convolution long and short term memory networks 1D-spiral convolution
下载PDF
Internet of Things Intrusion Detection System Based on Convolutional Neural Network 被引量:1
19
作者 Jie Yin Yuxuan Shi +5 位作者 Wen Deng Chang Yin Tiannan Wang Yuchen Song Tianyao Li Yicheng Li 《Computers, Materials & Continua》 SCIE EI 2023年第4期2119-2135,共17页
In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT d... In recent years, the Internet of Things (IoT) technology has developedby leaps and bounds. However, the large and heterogeneous networkstructure of IoT brings high management costs. In particular, the low costof IoT devices exposes them to more serious security concerns. First, aconvolutional neural network intrusion detection system for IoT devices isproposed. After cleaning and preprocessing the NSL-KDD dataset, this paperuses feature engineering methods to select appropriate features. Then, basedon the combination of DCNN and machine learning, this paper designs acloud-based loss function, which adopts a regularization method to preventoverfitting. The model consists of one input layer, two convolutional layers,two pooling layers and three fully connected layers and one output layer.Finally, a framework that can fully consider the user’s privacy protection isproposed. The framework can only exchange model parameters or intermediateresults without exchanging local individuals or sample data. This paperfurther builds a global model based on virtual fusion data, so as to achievea balance between data privacy protection and data sharing computing. Theperformance indicators such as accuracy, precision, recall, F1 score, and AUCof the model are verified by simulation. The results show that the model ishelpful in solving the problem that the IoT intrusion detection system cannotachieve high precision and low cost at the same time. 展开更多
关键词 Internet of things intrusion detection system convolutional neural network federated learning
下载PDF
A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks 被引量:1
20
作者 G.Nagalalli GRavi 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期475-490,共16页
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d... Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs. 展开更多
关键词 Wireless sensor network intrusion detection systems long short term memory megabat optimization
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部