A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of elect...A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.展开更多
In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect ...In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect effectively through classifying the samples automatically,and influence of X-ray absorption and enhancement by major elements of the samples is reduced.Experiments for the complex matrix effect correction in EDXRF analysis of samples in Pangang showed improved accuracy of the elemental analysis result.展开更多
Regeneration of damaged innervations in the peripheral nervous system (PNS) has been well documented in both animals and human. After injury, the damaged neurite swells and undergoes retrograde degeneration. Once th...Regeneration of damaged innervations in the peripheral nervous system (PNS) has been well documented in both animals and human. After injury, the damaged neurite swells and undergoes retrograde degeneration. Once the debris is cleared, it begins to sprout and restore damaged connections. Damaged axons are able to regrow as long as the perikarya are intact and have made contact with the Schwann cells in the endoneurial channel[2]. Under appropriate conditions,展开更多
The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the c...The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.展开更多
Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neura...Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.展开更多
Enterovirus 71 (EV71) can cause serious nervous system lesions but to date the pathogenesis has been unclear. Our results show that EV71 proliferates in the neural cells and leads to neural cell lesions. The study of ...Enterovirus 71 (EV71) can cause serious nervous system lesions but to date the pathogenesis has been unclear. Our results show that EV71 proliferates in the neural cells and leads to neural cell lesions. The study of the pathology of EV71 infection in neonatal rat brains shows that the invasive ability of EV71 to the nervous system in vivo may depend on many unknown factors.展开更多
Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the different...Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.展开更多
文摘A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.
基金supported by the National Natural Science Foundation of China (No.40574059)the Ministry of Education (No.NCET-04-0904)
文摘In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect effectively through classifying the samples automatically,and influence of X-ray absorption and enhancement by major elements of the samples is reduced.Experiments for the complex matrix effect correction in EDXRF analysis of samples in Pangang showed improved accuracy of the elemental analysis result.
文摘Regeneration of damaged innervations in the peripheral nervous system (PNS) has been well documented in both animals and human. After injury, the damaged neurite swells and undergoes retrograde degeneration. Once the debris is cleared, it begins to sprout and restore damaged connections. Damaged axons are able to regrow as long as the perikarya are intact and have made contact with the Schwann cells in the endoneurial channel[2]. Under appropriate conditions,
文摘The quantitative effects of chromium content on continuous cooling transformation (CCT) diagrams of novel air-cooled bainite steels were analyzed using artificial neural network models. The results showed that the chromium may retard the high and medium-temperature martensite transformation.
基金supported by the National Natural Science Foundation of China(61573078,61573147)the International S&T Cooperation Program of China(2014DFB70120)the State Key Laboratory of Robotics and System(SKLRS2015ZD06)
文摘Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment.
文摘Enterovirus 71 (EV71) can cause serious nervous system lesions but to date the pathogenesis has been unclear. Our results show that EV71 proliferates in the neural cells and leads to neural cell lesions. The study of the pathology of EV71 infection in neonatal rat brains shows that the invasive ability of EV71 to the nervous system in vivo may depend on many unknown factors.
基金funded by the National Natural Science Foundation of China,No.81501185(to CR)the Key Research&Development Project of Shandong Province of China,No.2017GSF218043(to CR)the Science and Technology Planning Project of Yantai of China,No.2016WS017(to LNG),2017WS105(to HL)
文摘Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.