期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Neurofibrillary tangles in Alzheimer's disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics 被引量:4
1
作者 athanasios metaxas stefan j.kempf 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1579-1581,共3页
As a key contributor to memory storage, the synapse is one of the earliest affected neuronal components in Alzheimer's disease (AD). Under physiological conditions, the synaptic con- nections between neurons underg... As a key contributor to memory storage, the synapse is one of the earliest affected neuronal components in Alzheimer's disease (AD). Under physiological conditions, the synaptic con- nections between neurons undergo activity-dependent func- tional and morphological re-organisation. This dynamic, 'plastic' neural ability critically depends on the structural integrity of the synapse. Thus, proteins that are implicated in preserving the organisation and dynamics of synaptic connections, including microtubules of the cytoskeleton and associated proteins, have attracted much focus for their involvement in the malfunction- ing AD synapse. 展开更多
关键词 neurofibrillary tangles in Alzheimer’s disease elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics NFT
下载PDF
Tau truncation in the pathogenesis of Alzheimer's disease:a narrative review 被引量:3
2
作者 Dandan Chu Xingyue Yang +5 位作者 Jing Wang Yan Zhou Jin-Hua Gu Jin Miao Feng Wu Fei Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1221-1232,共12页
Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau pro... Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein.Recent studies suggest that dysregulation of the microtubuleassociated protein Tau,especially specific proteolysis,could be a driving force for Alzheimer's disease neurodegeneration.Tau physiologically promotes the assembly and stabilization of microtubules,whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers,resulting in them gaining prion-like characteristics.In addition,Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner.This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments,investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease,and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease. 展开更多
关键词 Alzheimer's disease cleavage site diagnosis MARKER neurofibrillary tangles PHOSPHORYLATION TAU Tau aggregation therapy TRUNCATION
下载PDF
Potential therapeutic roles of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer’s disease 被引量:13
3
作者 Bhaskar C. Das Somsankar Dasgupta Swapan K. Ray 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1880-1892,共13页
All retinoids, which can be natural and synthetic, are chemically related to vitamin A. Both natural and synthetic retinoids use specific nuclear receptors such as retinoic acid receptors and retinoid X receptors to a... All retinoids, which can be natural and synthetic, are chemically related to vitamin A. Both natural and synthetic retinoids use specific nuclear receptors such as retinoic acid receptors and retinoid X receptors to activate specific signaling pathways in the cells. Retinoic acid signaling is extremely important in the central nervous system. Impairment of retinoic acid signaling pathways causes severe pathological processes in the central nervous system, especially in the adult brain. Retinoids have major roles in neural patterning, differentiation, axon outgrowth in normal development, and function of the brain. Impaired retinoic acid signaling results in neuroinflammation, oxidative stress, mitochondrial malfunction, and neurodegeneration leading to progressive Alzheimer’s disease, which is pathologically characterized by extra-neuronal accumulation of amyloid plaques(aggregated amyloid-beta) and intra-neurofibrillary tangles(hyperphosphorylated tau protein) in the temporal lobe of the brain. Alzheimer’s disease is the most common cause of dementia and loss of memory in old adults. Inactive cholinergic neurotransmission is responsible for cognitive deficits in Alzheimer’s disease patients. Deficiency or deprivation of retinoic acid in mice is associated with loss of spatial learning and memory. Retinoids inhibit expression of chemokines and neuroinflammatory cytokines in microglia and astrocytes, which are activated in Alzheimer’s disease. Stimulation of retinoic acid receptors and retinoid X receptors slows down accumulation of amyloids, reduces neurodegeneration, and thereby prevents pathogenesis of Alzheimer’s disease in mice. In this review, we described chemistry and biochemistry of some natural and synthetic retinoids and potentials of retinoids for prevention of neuroinflammation and neurodegeneration in Alzheimer’s disease. 展开更多
关键词 Alzheimer's disease AMYLOID PLAQUES neurofibrillary TANGLES NEUROINFLAMMATION NEURODEGENERATION RETINOIDS
下载PDF
Toxic tau: structural origins of tau aggregation in Alzheimer’s disease 被引量:24
4
作者 Abdullah Al Mamun Md.Sahab Uddin +1 位作者 Bijo Mathew Ghulam Md Ashraf 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1417-1420,共4页
Alzheimer’s disease is characterized by the extracellular accumulation of the amyloidβin the form of amyloid plaques and the intracellular deposition of the microtubule-associated protein tau in the form of neurofib... Alzheimer’s disease is characterized by the extracellular accumulation of the amyloidβin the form of amyloid plaques and the intracellular deposition of the microtubule-associated protein tau in the form of neurofibrillary tangles.Most of the Alzheimer’s drugs targeting amyloidβhave been failed in clinical trials.Particularly,tau pathology connects greatly in the pathogenesis of Alzheimer’s disease.Tau protein enhances the stabilization of microtubules that leads to the appropriate function of the neuron.Changes in the quantity or the conformation of tau protein could affect its function as a microtubules stabilizer and some of the processes wherein it is involved.The molecular mechanisms leading to the accumulation of tau are principally signified by numerous posttranslational modifications that change its conformation and structural state.Therefore,aberrant phosphorylation,as well as truncation of tau protein,has come into focus as significant mechanisms that make tau protein in a pathological entity.Furthermore,the shape-shifting nature of tau advocates to comprehend the progression of Alzheimer’s disease precisely.In this review,we emphasize the recent studies about the toxic and shape-shifting nature of tau in the pathogenesis of Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease neurofibrillary tangles shape-shifting nature of tau tau aggregation toxic tau
下载PDF
Tibolone modulates neuronal plasticity through regulating Tau, GSK3β/Akt/PI3K pathway and CDK5 p35/p25 complexes in the hippocampus of aged male mice 被引量:12
5
作者 Teresa Neri-Gomez Judith Espinosa-Raya +4 位作者 Sofia Diaz Cintra Julia Segura-Uribe Sandra Orozco-Suarez Juan Manuel Gallardo Christian Guerra-Araiza 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期588-595,共8页
Aging is a key risk factor for cognitive decline and age-related neurodegenerative disorders. Also, an age-related decrease in sex steroid hormones may have a negative impact on the formation of neurofibrillary tangl... Aging is a key risk factor for cognitive decline and age-related neurodegenerative disorders. Also, an age-related decrease in sex steroid hormones may have a negative impact on the formation of neurofibrillary tangles (NFTs); these hormones can regulate Tau phosphorylation and the principal kinase GSK3β involved in this process. Hormone replacement therapy decreases NFTs, but it increases the risk of some types of cancer. However, other synthetic hormones such as tibolone (TIB) have been used for hormone replacement therapy. The aim of this work was to evaluate the long-term effects of TIB (0.01 mg/kg and 1mg/kg, intragastrically for 12 weeks) on the content of total and hyperphosphorylated Tau (PHF-1) proteins and the regulation of GSK3β/Akt/PI3K pathway and CDK5/p35/p25 complexes in the hippocampus of aged male mice. We observed that the content of PHF-1 decreased with TIB administration. In contrast, no changes were observed in the active form of GSK3β or PI3K. TIB decreased the expression of the total and phosphorylated form of Akt while increased that of p110 and p85. The content of CDK5 was differentially modified with TIB: it was increased at low doses and decreased at high doses. When we analyzed the content of CDK5 activators, an increase was found on p35; however, the content of p25 decreased with administration of low dose of TIB. Our results suggest a possible mechanism of action of TIB in the hippocampus of aged male mice. Through the regulation of Tau and GSK3β/Akt/PI3K pathway, and CDK5/p35/p25 complexes, TIB may modulate neuronal plasticity and regulate learning and memory processes. 展开更多
关键词 nerve regeneration TIBOLONE HIPPOCAMPUS aged mice sex steroids AKT GSK3Β PI3K neuralplasticity TAU neurofibrillary tangles neural regeneration
下载PDF
Hydrogen-rich water ameliorates neuropathological impairments in a mouse model of Alzheimer's disease through reducing neuroinflammation and modulating intestinal microbiota 被引量:7
6
作者 Yi-Tong Lin Qing-Qing Shi +6 位作者 Lei Zhang Cai-Ping Yue Zhi-Jun He Xue-Xia Li Qian-Jun He Qiong Liu Xiu-Bo Du 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期409-417,共9页
Hydrogen exhibits the potential to treat Alzheimer's disease. Stereotactic injection has been previously used as an invasive method of administering active hydrogen, but this method has limitations in clinical pra... Hydrogen exhibits the potential to treat Alzheimer's disease. Stereotactic injection has been previously used as an invasive method of administering active hydrogen, but this method has limitations in clinical practice. In this study, triple transgenic(3×Tg) Alzheimer's disease mice were treated with hydrogen-rich water for 7 months. The results showed that hydrogen-rich water prevented synaptic loss and neuronal death, inhibited senile plaques, and reduced hyperphosphorylated tau and neurofibrillary tangles in 3×Tg Alzheimer's disease mice. In addition, hydrogen-rich water improved brain energy metabolism disorders and intestinal flora imbalances and reduced inflammatory reactions. These findings suggest that hydrogen-rich water is an effective hydrogen donor that can treat Alzheimer's disease. This study was approved by the Animal Ethics and Welfare Committee of Shenzhen University, China(approval No. AEWC-20140615-002) on June 15, 2014. 展开更多
关键词 Alzheimer's disease amyloid-β ANTI-INFLAMMATION BIOENERGETICS gut microbiota hydrogen therapy neurodegenerative disease neurofibrillary tangles
下载PDF
MicroRNA and mRNA profiling of cerebral cortex in a transgenic mouse model of Alzheimer’s disease by RNA sequencing 被引量:7
7
作者 Li Zeng Hai-Lun Jiang +2 位作者 Ghulam Md Ashraf Zhuo-Rong Li Rui Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第10期2099-2108,共10页
In a previous study,we found that long non-coding genes in Alzheimer’s disease(AD)are a result of endogenous gene disorders caused by the recruitment of microRNA(miRNA)and mRNA,and that miR-200a-3p and other represen... In a previous study,we found that long non-coding genes in Alzheimer’s disease(AD)are a result of endogenous gene disorders caused by the recruitment of microRNA(miRNA)and mRNA,and that miR-200a-3p and other representative miRNAs can mediate cognitive impairment and thus serve as new biomarkers for AD.In this study,we investigated the abnormal expression of miRNA and mRNA and the pathogenesis of AD at the epigenetic level.To this aim,we performed RNA sequencing and an integrative analysis of the cerebral cortex of the widely used amyloid precursor protein and presenilin-1 double transgenic mouse model of AD.Overall,129 mRNAs and 68 miRNAs were aberrantly expressed.Among these,eight down-regulated miRNAs and seven up-regulated miRNAs appeared as promising noninvasive biomarkers and therapeutic targets.The main enriched signaling pathways involved mitogen-activated kinase protein,phosphatidylinositol 3-kinase-protein kinase B,mechanistic target of rapamycin kinase,forkhead box O,and autophagy.An miRNA-mRNA network between dysregulated miRNAs and corresponding target genes connected with AD progression was also constructed.These miRNAs and mRNAs are potential biomarkers and therapeutic targets for new treatment strategies,early diagnosis,and prevention of AD.The present results provide a novel perspective on the role of miRNAs and mRNAs in AD.This study was approved by the Experimental Animal Care and Use Committee of Institute of Medicinal Biotechnology of Beijing,China(approval No.IMB-201909-D6)on September 6,2019. 展开更多
关键词 3ʹ-untranslated region Alzheimer’s disease BIOMARKER cerebral cortex Gene Ontology high-throughput sequencing intracellular neurofibrillary tangles microtubule-associated protein-τ miRNA-mRNA network presenilin 1
下载PDF
Longitudinal observation of ten family members with idiopathic basal ganglia calcification: A case report
8
作者 Seiju Kobayashi Kumiko Utsumi +6 位作者 Masaru Tateno Tomo Iwamoto Tomonori Murayama Hitoshi Sohma Wataru Ukai Eri Hashimoto Chiaki Kawanishi 《World Journal of Clinical Cases》 SCIE 2019年第12期1483-1491,共9页
BACKGROUND Familial idiopathic basal ganglia calcification (FIBGC) is a rare autosomal dominant disorder that causes bilateral calcification of the basal ganglia and/or cerebellar dentate nucleus, among other location... BACKGROUND Familial idiopathic basal ganglia calcification (FIBGC) is a rare autosomal dominant disorder that causes bilateral calcification of the basal ganglia and/or cerebellar dentate nucleus, among other locations. CASE SUMMARY The aim of this study is to report 10 cases of FIBGC observed in a single family. Seven patients showed calcification on their computed tomography scan, and all of these patients carried the SLC20A2 mutation. However, individuals without the mutation did not show calcification. Three patients among the 7 with calcification were symptomatic, while the remaining 4 patients were asymptomatic. Additionally, we longitudinally observed 10 subjects for ten years. In this paper, we mainly focus on the clinical course and neuroradiological findings in the proband and her son.CONCLUSION The accumulation of more case reports and further studies related to the manifestation of FIBGC are needed. 展开更多
关键词 IDIOPATHIC BASAL GANGLIA CALCIFICATION Fahr’s disease SLC20A2 Diffuse neurofibrillary TANGLES with CALCIFICATION SINGLE-PHOTON emission computed tomography Case report
下载PDF
The Growing Evidence for Photobiomodulation as a Promising Treatment for Alzheimer’s Disease
9
作者 Lew Lim 《Journal of Biosciences and Medicines》 2018年第12期100-110,共11页
Despite the current belief that there is no effective treatment for Alzheimer’s Disease (AD), one emerging modality may change this belief: Photobiomodulation (PBM). It has credible mechanisms and growing evidence to... Despite the current belief that there is no effective treatment for Alzheimer’s Disease (AD), one emerging modality may change this belief: Photobiomodulation (PBM). It has credible mechanisms and growing evidence to support its case. Transcranial PBM for AD is a single intervention with multiple pathway mechanisms stemming from delivering low energy near infrared (NIR) light to the mitochondria in brain cells. The mechanisms involve the activation of gene transcription that lead to neuronal recovery, removal of toxic plaques, normalizing network oscillations that can lead to improved cognition and functionality. When PBM is delivered at 810 nm wavelength and pulsed at 40 Hz, early evidence suggests that very significant outcomes are possible. Literature related to PBM and AD has covered in vitro cellular, animal and human case reports, with promising results. They warrant robust randomized trials which are either ongoing or ready to start. The evidence in human studies is manifested in assessment scales such ADAS-cog, MMSE, and ADAS-ADL, and are supported by fMRI imaging and EEG. 展开更多
关键词 PHOTOBIOMODULATION Alzheimer’s Disease Near Infrared Light DEFAULT Mode Network Clinical Trials neurofibrillary TANGLES TAU Neuro Gamma
下载PDF
The origin and development of plaques and phosphorylated tau are associated with axonopathy in Alzheimer’s disease 被引量:1
10
作者 肖爱武 何敬 +6 位作者 王茜 罗艺 孙燕 周艳平 官阳 Paul J.Lucassen 戴甲培 《Neuroscience Bulletin》 SCIE CAS CSCD 2011年第5期287-299,共13页
Objective The production of neurotoxic β-amyloid and the formation of hyperphosphorylated tau are thought to be critical steps contributing to the neuropathological mechanisms in Alzheimer’s disease (AD). However,... Objective The production of neurotoxic β-amyloid and the formation of hyperphosphorylated tau are thought to be critical steps contributing to the neuropathological mechanisms in Alzheimer’s disease (AD). However, there remains an argument as to their importance in the onset of AD.Recent studies have shown that axonopathy is considered as an early stage of AD. However, the exact relationship between axonopathy and the origin and development of classic neuropathological changes such as senile plaques (SPs) and neurofibrillary tangles (NFTs) is unclear. The present study aimed to investigate this relationship. Methods Postmortem tracing, combined with the immunohistochemical or immunofluo-rescence staining, was used to detect axonopathy and the formation of SPs and NFTs. Results "Axonal leakage"–a novel type of axonopathy, was usually accompanied with the extensive swollen axons and varicosities, and was associated with the origin and development of Aβ plaques and hyperphosphorylated tau in the brains of AD patients. Conclusion Axonopathy, particularly axonal leakage, might be a key event in the initiation of the neuropathological processes in AD. 展开更多
关键词 Alzheimer’s disease AXONOPATHY senile plaques neurofibrillary tangles postmortem tracing
原文传递
Research Progress in the Pathogenesis of Alzheimer's Disease 被引量:43
11
作者 Yi-Gang Chen 《Chinese Medical Journal》 SCIE CAS CSCD 2018年第13期1618-1624,共7页
Objective: Alzheimer's disease (AD) is a kind of chronic degenerative disease of the central nervous system, characteristics of cognitive dysfunction, and behavioral disability. The pathological changes include th... Objective: Alzheimer's disease (AD) is a kind of chronic degenerative disease of the central nervous system, characteristics of cognitive dysfunction, and behavioral disability. The pathological changes include the formation of senile plaques-containing beta-amyloid (Aβ), neurofibrillary tangles (NFTs), loss of neurons, and synapses. So far, the pathogenesis of AD is still unclear. This study was aimed to review the major pathogenesis of AD-related to the published AD studies in recent 20 years. Data Sources: The author retrieved information from the PubMed database up to ,lanuary 2018, using various search terms and their combinations, including AD, Aβ, NFTs, pathogenesis, and genetic mutation. Study Selection: The author included data from peer-reviewed journals printed in English and Chinese on pathophysiological fiactors in AD. He organized these informations to explain the possible pathogenesis in AD. Results: There are many amounts of data supporting the view that AD pathogenesis so tier there mainly are Aβ toxicity, tau protein, gene mutation, synaptic damages, intermediate neurons and network abnormalities, changes in mitochondrial function, chemokines, etc., Its nosogenesis may be involved in multiple theories and involved in multiple molecular signaling pathways, including Aβ, tau protein, and synaptic anomaly: mutual relationship between the mechanisms urge jointly neuronal degeneration. Conclusions: This review highlights the research advances in the pathogenesis of AD. Future research has needed to fuly disclose the association between multiple pathogenesis at the same time to interdict multiple signaling pathways, etc. 展开更多
关键词 Alzheimer's Disease BETA-AMYLOID neurofibrillary Tangles PATHOGENESIS
原文传递
Advances in the Pathogenesis of Alzheimer’s Disease:Focusing on Tau-Mediated Neurodegeneration 被引量:15
12
作者 Yale Duan Suzhen Dong +2 位作者 Feng Gu Yinghe Hu Zheng Zhao 《Translational Neurodegeneration》 SCIE CAS 2012年第1期192-198,共7页
In addition to senile plaques and cerebral amyloid angiopathy,the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles(NFTs)represents another neuropathological hallmark in AD bra... In addition to senile plaques and cerebral amyloid angiopathy,the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles(NFTs)represents another neuropathological hallmark in AD brain.Tau is a microtubule-associated protein and localizes predominantly in the axons of neurons with the primary function in maintaining microtubules stability.When the balance between tau phosphorylation and dephosphorylation is changed in favor of the former,tau is hyperphosphorylated and the level of the free tau fractions elevated.The hyperphosphorylation of tau protein and formation of NFTs represent a characteristic neuropathological feature in AD brain.We have discussed the role of Aβin AD in our previous review,this review focused on the recent advances in tau-mediated AD pathology,mainly including tau hyperphosphorylation,propagation of tau pathology and the relationship between tau and Aβ. 展开更多
关键词 Alzheimer’s disease TAU A-BETA TAUOPATHY Tau hyperphosphorylation Intraneuronal neurofibrillary tangles
原文传递
Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease 被引量:7
13
作者 Jun-Ting Yang Zhao-Jun Wang +4 位作者 Hong-Yan Cai Li Yuan Meng-Ming Hu Mei-Na Wu Jin-Shun Qi 《Neuroscience Bulletin》 SCIE CAS CSCD 2018年第5期736-746,共11页
Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflam- mation in the brain, as well as impaired cognitive behavio... Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflam- mation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PSI/tau triple-trans- genic AD mice (3xTg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofib- rillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expres- sion levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38- mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB- MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females. 展开更多
关键词 Sex difference 3xTg-AD mouse Amyloid plaque neurofibrillary tangle NEUROINFLAMMATION Spatial memory
原文传递
Phosphorylated TDP-43 Staging of Primary Age-Related Tauopathy 被引量:5
14
作者 Xiaoling Zhang Bing Sun +8 位作者 Xing Wang Hui Lu Fangjie Shao Annemieke J.M.Rozemuller Huazheng Liang Chong Liu Jiadong Chen Manli Huang Keqing Zhu 《Neuroscience Bulletin》 SCIE CAS CSCD 2019年第2期183-192,共10页
Primary age-related tauopathy(PART) is characterized by tau neurofibrillary tangles(NFTs) in the absence of amyloid plaque pathology. In the present study,we analyzed the distribution patterns of phosphorylated43-kDa ... Primary age-related tauopathy(PART) is characterized by tau neurofibrillary tangles(NFTs) in the absence of amyloid plaque pathology. In the present study,we analyzed the distribution patterns of phosphorylated43-kDa TAR DNA-binding protein(pTDP-43) in the brains of patients with PART. Immunohistochemistry and immunofluorescence double-labeling in multiple brain regions was performed on brain tissues from PART,Alzheimer's disease(AD), and aging control cases. We examined the regional distribution patterns of pTDP-43 intraneuronal inclusions in PART with Braak NFT stages[ 0 and B IV, and a Thal phase of 0(no beta-amyloid present). We found four stages which indicated potentially sequential dissemination of pTDP-43 in PART. Stage I was characterized by the presence of pTDP-43 lesions in the amygdala, stage II by such lesions in the hippocampus,stage III by spread of pTDP-43 to the neocortex, and stage IV by pTDP-43 lesions in the putamen, pallidum, and insular cortex. In general, the distribution pattern of pTDP-43 pathology in PART cases was similar to the early TDP-43 stages reported in AD, but tended to be more restricted to the limbic system. However, there were some differences in the distribution patterns of pTDP-43 between PART and AD, especially in the dentate gyrus of the hippocampus. Positive correlations were found in PART between the Braak NFT stage and the pTDP-43 stage and density. 展开更多
关键词 TDP-43 Primary age-related tauopathy Alzheimer's disease neurofibrillary tangle HIPPOCAMPUS
原文传递
Development in the research of molecular mechanism of Alzheimer's disease
15
作者 Ming Gu Xiaomin Wang +1 位作者 Yuanyue Mu Ming Fan 《Chinese Science Bulletin》 SCIE EI CAS 1999年第14期1257-1264,共8页
Alzheimer’s disease (AD) is a kind of central nervous system disease. The cause of AD is unclear. It is found that the remarkable histopathological characters of AD are senile plaques and neurofibrillary tangles.β-a... Alzheimer’s disease (AD) is a kind of central nervous system disease. The cause of AD is unclear. It is found that the remarkable histopathological characters of AD are senile plaques and neurofibrillary tangles.β-amyloid plays an important role in the formation of senile plaques and the abnormal phosphorylation of Tau protein is the main reason of neurofibrillary tangles. Apolipoprotein E is correlated to AD’s access, and the third pathological characterAMY plaque perhaps represents a new cause of AD. Presenlin and proteinaceous infectious particles are also related with AD. A summary of molecular mechanism for AD and the development of research is presented. 展开更多
关键词 Alzheimer’s disease SENILE PLAQUE neurofibrillary TANGLES Β-AMYLOID Tau protein apoliporprotein E presenlin proteinaceous INFECTIOUS particles.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部