BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing ...BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.展开更多
The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room...The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.展开更多
Objective:To evaluate the alteration of chemical behavior of L-ascorbic acid(vitamin C) with metal ion(nickel) at different pH solutions in vitro.Methods:Spectra of pure aqueous solution of L-ascorbic acid(E mark) com...Objective:To evaluate the alteration of chemical behavior of L-ascorbic acid(vitamin C) with metal ion(nickel) at different pH solutions in vitro.Methods:Spectra of pure aqueous solution of L-ascorbic acid(E mark) compound and NiSO_4(H_2O)(sigma USA) were evaluated by UV visible spectrophotometer.Spectral analysis of L-ascorbic acid and nickel at various pH(2.0, 7.0,7.4 and 8.6) at room temperature of 29℃ was recorded.In this special analysis,combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded.Results:The result revealed that λ_(max)(peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 run whereas at neutral pH 7.0,λ_(max) was 29S.4 run.In alkaline pH 8.6,λ_(max) was 295.4 nm and at pH 7.4 the λ_(max) of L-ascorbic acid remained the same as 295.4 nm.Nickel solution at acidic pH 2.0 was 394.5 nm,whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm.But at alkaline pH 8.6,λ_(max) value of nickel sulfate became 392.0 nm.The combined solution of L-ascorbic acid and nickel sulfate(6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm,respectively whereas at pH 7.0,L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm.At pH 7.4,L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6(alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm,respectively. Conclusions:Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH.Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical(HSc*) generation from the reaction of H,ASc + Ni(Ⅱ) is the cause of such alteration of λ_(max),value of L-ascorbic acid in the presence of metal nickel.展开更多
Three kinds of dialkylphosphinic acids(DAPAs),i.e.dihexylphophinic acid(DHPA),di-(2,4,4-trimethylpentyl) phosphinic acid(DTMPPA)and didecylphophinic acid(DDPA),were synthesized through free radical addition reaction.T...Three kinds of dialkylphosphinic acids(DAPAs),i.e.dihexylphophinic acid(DHPA),di-(2,4,4-trimethylpentyl) phosphinic acid(DTMPPA)and didecylphophinic acid(DDPA),were synthesized through free radical addition reaction.The influence of the types of initiator,reation time and reaction temperature on the yield of DAPAs were investigated.The products were characterized by NMR and MS.By using DHPA,DTMPPA and DDPA(10%in kerosene)as extractants,the extraction of Co2 +and Ni2 +in sulphate medium at different equilibrium pH values were measured.The results show that the maximum yield of DHPA, DTMPPA and DDPA can all be achieved at about 130℃under the initiation of di-tert-butyl peroxide(DTBP).All the extraction of cobalt with respect to DHPA,DDPA and DTMPPA precedes that of nickel.The difference in pH1/2 value(defined as the pH at which 50%metal extraction occurs)between cobalt and nickel increases in the following sequence from large to small:DHPA,DDPA and DTMPPA,which indicates that the separation ability for cobalt and nickel ascends from DHPA,DDPA to DTMPPA.展开更多
基金This work was funded by the National High-Tech Research and Development Program of China under the grant No.2001AA320604The authors gratefully acknowledge the help from the Institute of Biomaterial and Surface Engineering,Southwest JiaoTong University.
文摘BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.51371089 and 51401083)
文摘The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.
基金financially supported by Defence Institute ofPhysiology and Allied Sciences,Government of India,New Delhi[grant No.TC/292/TASK-116(KDS)/DIPAS/2006]
文摘Objective:To evaluate the alteration of chemical behavior of L-ascorbic acid(vitamin C) with metal ion(nickel) at different pH solutions in vitro.Methods:Spectra of pure aqueous solution of L-ascorbic acid(E mark) compound and NiSO_4(H_2O)(sigma USA) were evaluated by UV visible spectrophotometer.Spectral analysis of L-ascorbic acid and nickel at various pH(2.0, 7.0,7.4 and 8.6) at room temperature of 29℃ was recorded.In this special analysis,combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded.Results:The result revealed that λ_(max)(peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 run whereas at neutral pH 7.0,λ_(max) was 29S.4 run.In alkaline pH 8.6,λ_(max) was 295.4 nm and at pH 7.4 the λ_(max) of L-ascorbic acid remained the same as 295.4 nm.Nickel solution at acidic pH 2.0 was 394.5 nm,whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm.But at alkaline pH 8.6,λ_(max) value of nickel sulfate became 392.0 nm.The combined solution of L-ascorbic acid and nickel sulfate(6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm,respectively whereas at pH 7.0,L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm.At pH 7.4,L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6(alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm,respectively. Conclusions:Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH.Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical(HSc*) generation from the reaction of H,ASc + Ni(Ⅱ) is the cause of such alteration of λ_(max),value of L-ascorbic acid in the presence of metal nickel.
基金Projects(2007CB613506)supported by the National Basic Research Program of ChinaProjects(50674060,50734005)supported by the National Natural Science Foundation of China
文摘Three kinds of dialkylphosphinic acids(DAPAs),i.e.dihexylphophinic acid(DHPA),di-(2,4,4-trimethylpentyl) phosphinic acid(DTMPPA)and didecylphophinic acid(DDPA),were synthesized through free radical addition reaction.The influence of the types of initiator,reation time and reaction temperature on the yield of DAPAs were investigated.The products were characterized by NMR and MS.By using DHPA,DTMPPA and DDPA(10%in kerosene)as extractants,the extraction of Co2 +and Ni2 +in sulphate medium at different equilibrium pH values were measured.The results show that the maximum yield of DHPA, DTMPPA and DDPA can all be achieved at about 130℃under the initiation of di-tert-butyl peroxide(DTBP).All the extraction of cobalt with respect to DHPA,DDPA and DTMPPA precedes that of nickel.The difference in pH1/2 value(defined as the pH at which 50%metal extraction occurs)between cobalt and nickel increases in the following sequence from large to small:DHPA,DDPA and DTMPPA,which indicates that the separation ability for cobalt and nickel ascends from DHPA,DDPA to DTMPPA.