期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Unraveling the reaction reversibility and structure stability of nickel sulfide anodes for lithium ion batteries
1
作者 Yu Huang Chunyuan Liang +10 位作者 Yueling Cai Yi Zhou Bingkun Guo Jipeng Cheng Heguang Liu Peng Wang Qianqian Li Anmin Nie Hongtao Wang Jinsong Wu Tongyi Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期392-401,I0010,共11页
The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have inves... The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have investigated the fundamental reaction behaviors of nickel sulfide(NixSy)as lithium-ion battery anodes by in-situ TEM.We find that Ni_(3)S_(2)is the electrochemically stable phase,which appears in the first cycle of the NixSyanode.From the second cycle,conversion between Ni_(3)S_(2)and Li_(2)S/Ni is the dominant electrochemical reaction.In lithiation,the NixSynanoparticles evolve into a mixture of Ni nanocrystals embedded in Li_(2)S matrix,which form a porous structure upon full lithiation,and with the recrystallization of the Ni_(3)S_(2)phase in delithiation,a compact and interconnected network is built.Structural stability in cycles is susceptible to particle size and substrate restraint.Carbon substrate can certainly improve the tolerance for size-dependent pulverization of NixSynanoparticles.When NixSynanoparticle exceeds the critical size value,the morphology of the particle is no longer well maintained even under the constraints of the carbon substrate.This work deepens the understanding of electrochemical reaction behavior of conversiontype materials and helps to rational design of high-energy density battery anodes. 展开更多
关键词 nickel sulfide anodes Reaction reversility Structure rebuilding In-situ TEM Lithium-ion battery
下载PDF
Controlled moderative sulfidation-fabricated hierarchical heterogeneous nickel sulfides-based electrocatalyst with tripartite Mo doping for efficient oxygen evolution
2
作者 Xing Yu Qingyun Lv +6 位作者 Lulu She Long Hou Yves Fautrelle Zhongming Ren Guanghui Cao Xionggang Lu Xi Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期780-788,共9页
An electrocatalyst with heterogeneous nanostructure, especially the hierarchical one, generally shows a more competitive activity than that of its single-component counterparts for oxygen evolution reaction(OER), due ... An electrocatalyst with heterogeneous nanostructure, especially the hierarchical one, generally shows a more competitive activity than that of its single-component counterparts for oxygen evolution reaction(OER), due to the synergistically enhanced kinetics on enriched active sites and reconfigured electronic band structure. Here this work introduces hierarchical heterostructures into a NiMo@NiS/MoS_(2)@Ni_(2)S_(2)/MoO_(x)(NiMoS) composite by one-pot controlled moderative sulfidation. The optimal solvent composition and addition of NaOH enable NiMoS to own loose and porous structures, smaller nanoparticle sizes, optimal phase composition and chemical states of elements, improving the OER activity of NiMoS. To achieve current densities of 50 and 100 mA cm^(-1), small overpotentials of 275 and 306 mV are required respectively, together with a minor Tafel slope of 58 mV dec^(-1), which outperforms most reported sulfide catalysts and IrO_(2). The synergistic effects in the hierarchical heterostructures expose more active sites,adjust the electronic band structure, and enable the fast charge transfer kinetics, which construct an optimized local coordination environment for high OER electrocatalytic activity. Furthermore, the hierarchical heterostructures suppress the distinct lowering of electrical conductivity and collapse of pristine structures resulted from the metal oxidation and synchronous S leaching during OER, yielding competitive catalytic stability. 展开更多
关键词 OER electrocatalysts Controlled moderative sulfidation Hierarchical heterostructures nickel sulfides Tripartite Mo doping
下载PDF
Chemical Enrichment of Nickel Sulfide
3
作者 Vladimir Luganov Brajendra Mishra +1 位作者 Saule Baimakhanova Rinat Akpanbayev 《International Journal of Nonferrous Metallurgy》 CAS 2016年第1期1-8,共8页
The availability of polymetallic ores is getting leaner in grade and is larger but inferior in volumes than in the past, making the extraction of copper, nickel and other non-ferrous metals metallurgically more diffic... The availability of polymetallic ores is getting leaner in grade and is larger but inferior in volumes than in the past, making the extraction of copper, nickel and other non-ferrous metals metallurgically more difficult to produce. The standard technologies, including enrichment and concentration, do not provide methods for obtaining monometallic concentrates and high extraction of metals into the commercial product. Pyrometallurgical processing of large volumes of poor raw materials is not economical and is complicated from the technological point of view. Conditions of chemical enrichment of poor natural materials have been studied with the use of technology of salt exchange leaching. The main impurity in sulfide ores of nonferrous metals is iron present in the forms of pyrite and pyrrhotite and the properties of chemical enrichment for nickel in pyrite concentrates has been investigated in this work. On the basis of thermodynamic analysis carried out with the use of Potential-pH Pourbaix’s Diagrams, it has been established that, with the use of nickel salt, it is possible to leach iron sulfides from ores. Based on the study of the mechanism and kinetics of the process of dissolution of iron sulfides with nickel salts, it was established that during the dissolution, the chemical composition and thermodynamic characteristics of the dissolved iron sulfides change—the residues from leaching are enriched with iron sulfides that are rich in sulfur and also result with elemental sulfur formation. Enrichment of leaching residues with sulfide iron with increased sulfur content and formation on the surface of nickel sulfide leads to increase of diffusional resistances and the process is limited by the velocity of mass transfer. To increase the velocity of the process and completeness of the reaction, it is necessary to activate the process, in particular, by grinding the solid phase. 展开更多
关键词 nickel sulfide PYRRHOTITE Chemical Enrichment THERMODYNAMICS
下载PDF
Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors 被引量:5
4
作者 Ramyakrishna Pothu Ravi Bolagam +5 位作者 Qing-Hong Wang Wei Ni Jin-Feng Cai Xiao-Xin Peng Yue-Zhan Feng Jian-Min Ma 《Rare Metals》 SCIE EI CAS CSCD 2021年第2期353-373,共21页
Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is def... Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized. 展开更多
关键词 SUPERCAPACITORS nickel sulfides Hybrid structures Energy storage materials PSEUDOCAPACITANCE
原文传递
Sulfur–nitrogen co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi_(2)S_(4) as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions
5
作者 Bing-Lu Deng Li-Ping Guo +2 位作者 Yuan Lu Hai-Bo Rong Dong-Chu Cheng 《Rare Metals》 SCIE EI CAS CSCD 2022年第3期911-920,共10页
Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped g... Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped graphene supported cobalt–nickel sulfide composite catalyst(rGO@SN-CoNi_(2)S_(4))was synthesized simply via a one-step hydrothermal method.The as-synthesized CoNi_(2)S_(4)particles grew in a mosaic manner inside GO lamellae and were encapsulated with graphene.As a bifunctional catalyst,the r GO@SN-CoNi_(2)S_(4)exhibits excellent electrocatalytic performance under alkaline con-ditions,which only required the overpotential of 142.6 mV(vs.RHE)and 310 m V(vs.RHE)to deliver a current density of 10 mA·cm^(-2) for HER and OER,respectively.The good hydrophilicity of the r GO@SN,the pure phase of bimetallic structure,and the chemical coupling/interaction between the CoNi_(2)S_(4)and the rGO@SN are attributable to be the possible reasons responsible for the higher HER and OER catalytic activities.Additionally,the rGO@SN-CoNi_(2)S_(4)also shows a great potential for serving as an excellent cathode and anode electrolyzer during the water splitting process. 展开更多
关键词 Hydrogen evolution reaction Oxygen evolution reaction S and N co-doped grapheme Cobalt–nickel sulfide Water splitting
原文传递
Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries 被引量:11
6
作者 Yirong Zhu Jingying Li +6 位作者 Xiaoru Yun Ganggang Zhao Peng Ge Guoqiang Zou Yong Liu Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期1-18,共18页
Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w... Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials. 展开更多
关键词 Energy storage Alkaline aqueous batteries Carbon quantum dot nickel cobalt sulfide
下载PDF
镍精矿除铜的单纯形优化 被引量:2
7
作者 彭济时 王培元 《有色金属》 CSCD 1992年第4期56-60,共5页
本文简要叙述了单纯形优化的基本思想与寻优步骤。应用单纯形法对镍精矿—阳极泥—镍电解阳极液反应体系的深度除铜条件进行了寻优试验,其结果与前人的试验及工业实践基本相同,表明单纯形优化方法是确定多变量湿法冶金体系中某些重要因... 本文简要叙述了单纯形优化的基本思想与寻优步骤。应用单纯形法对镍精矿—阳极泥—镍电解阳极液反应体系的深度除铜条件进行了寻优试验,其结果与前人的试验及工业实践基本相同,表明单纯形优化方法是确定多变量湿法冶金体系中某些重要因素的一种快速而简单的方法。 展开更多
关键词 simplex method optimization copper removal nickel anolyte nickel sulfide anode sludge
下载PDF
Interface Engineering of NixSy@MnOxHy Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability 被引量:5
8
作者 Pan Wang Yuanzhi Luo +4 位作者 Gaixia Zhang Zhangsen Chen Hariprasad Ranganathan Shuhui Sun Zhicong Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期246-262,共17页
Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid ma... Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy. 展开更多
关键词 Interface engineering Protective shell Manganese compound nickel sulfides BIFUNCTIONAL Water splitting
下载PDF
Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor 被引量:3
9
作者 Tao Liu Jiahao Liu +2 位作者 Liuyang Zhang Bei Cheng Jiaguo Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第12期113-121,共9页
Materials featured with self-supported three-dimensional network,hierarchical pores and rich electrochemical active sites are considered as promising electrodes for pseudocapacitors.Herein,a novel strategy for the gro... Materials featured with self-supported three-dimensional network,hierarchical pores and rich electrochemical active sites are considered as promising electrodes for pseudocapacitors.Herein,a novel strategy for the growth of nickel-cobalt bisulfide(Ni Co S)nanosheets arrays on carbon cloth(CC)as supercapacitor electrodes is reported,involving deposition of two-dimensional metal-organic framework(MOF)precursors on the CC skeletons,conversion of MOF into nickel-cobalt layered double-hydroxide by ion exchange process and formation of Ni Co S by a sulfidation treatment.The Ni Co S nanosheets with rough surface and porous structures are uniformly anchored on the CC skeletons.The unique architecture endows the composite(Ni Co S/CC)with abundant accessible active sites.Besides,robust electrical/mechanical joint between the nanosheets and the substrates is attained,leading to the improved electrochemical performance.Moreover,an asymmetric supercapacitor device is constructed by using Ni Co S/CC and activated carbon as a positive electrode and a negative electrode,respectively.The optimized device exhibits a high specific capacitance,large energy density and long cycle life.The Ni Co S/CC electrode with intriguing electrochemical properties and mechanical flexibility holds great prospect for next-generation wearable devices. 展开更多
关键词 Metal-organic framework nickel sulfide Cobalt sulfide Carbon cloth SUPERCAPACITOR
原文传递
Multilayer Strategy for Photoelectrochemical Hydrogen Generation:New Electrode Architecture that Alleviates Multiple Bottlenecks 被引量:1
10
作者 Selvaraj Seenivasan Hee Moon Do‑Heyoung Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期92-109,共18页
Years of research have demonstrated that the use of multiple components is essential to the development of a commercial photoelectrode to address specific bottlenecks,such as low charge separation and injection effici... Years of research have demonstrated that the use of multiple components is essential to the development of a commercial photoelectrode to address specific bottlenecks,such as low charge separation and injection efficiency,low carrier diffusion length and lifetime,and poor durability.A facile strategy for the synthesis of multilayered photoanodes from atomic-layer-deposited ultrathin films has enabled a new type of electrode architecture with a total multilayer thickness of 15–17 nm.We illustrate the advantages of this electrode architecture by using nanolayers to address different bottlenecks,thus producing a multilayer photoelectrode with improved interface kinetics and shorter electron transport path,as determined by interface analyses.The photocurrent density was twice that of the bare structure and reached a maximum of 33.3±2.1 mA cm^(−2) at 1.23 VRHE.An integrated overall water-splitting cell consisting of an electrocatalytic NiS cathode and Bi_(2)S_(3)/NiS/NiFeO/TiO_(2) photoanode was used for precious-metal-free seawater splitting at a cell voltage of 1.23 V without degradation.The results and root analyses suggest that the distinctive advantages of the electrode architecture,which are superior to those of bulk bottom-up core–shell and hierarchical architectures,originate from the high density of active sites and nanometer-scale layer thickness,which enhance the suitability for interface-oriented energy conversion processes. 展开更多
关键词 Atomic layer deposition Bismuth sulfide n-p junction PHOTOELECTROCHEMICAL nickel sulfide
下载PDF
Integrated Ni-P-S nanosheets array as superior electrocatalysts for hydrogen generation 被引量:1
11
作者 Haoxuan Zhang Haibo Jiang +2 位作者 Yanjie Hu Hao Jiang Chunzhong Li 《Green Energy & Environment》 SCIE 2017年第2期112-118,共7页
Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems.Here, we present the synthesis of integrated Ni-P-S nanosheets array includi... Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems.Here, we present the synthesis of integrated Ni-P-S nanosheets array including Ni_2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction(HER) in a wide pH range. In alkaline media, it can generate current densities of 10, 20 and 100 mA cm^(-2) at low overpotentials of only-101.9,-142.0 and-207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation. 展开更多
关键词 Nanosheets array nickel phosphide nickel sulfide OVERPOTENTIAL Hydrogen generation
下载PDF
Phosphorus-doped Ni–Co sulfides connected by carbon nanotubes for flexible hybrid supercapacitor
12
作者 Shengwang Su Li Sun +2 位作者 Feng Xie Jialong Qian Yihe Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第5期491-503,共13页
As promising electrode materials for supercapacitors,nickel-cobalt bimetallic sulfides render the advantages of abundant redox reactions and inherently high conductivity.However,in general,unsatisfactory performance o... As promising electrode materials for supercapacitors,nickel-cobalt bimetallic sulfides render the advantages of abundant redox reactions and inherently high conductivity.However,in general,unsatisfactory performance of low specific capacity,low rate capability,and fast capacity loss exist in Ni–Co sulfide electrodes.Herein,we rationally regulate phosphorus-doped nickel–cobalt sulfides(P-NCS)to enhance the electrochemical performance by gas–solid phosphorization.Moreover,carbon nanotubes(CNTs)as conductive additives are added to improve the cycle stability and conductivity and form the composite P-NCS/C/CNT.According to density functional theory,more electrons near the Fermi surface of P-NCS are demonstrated notionally than those of simple CoNi2S4.Electrochemical results manifest that P-NCS/C/CNT exhibits superior electrochemical performance,e.g.,high specific capacity(932.0 C·g^(-1)at 1 A·g^(-1)),remarkable rate capability(capacity retention ratio of 69.1%at 20 A·g^(-1)),and lower charge transfer resistance.More importantly,the flexible hybrid asymmetric supercapacitor is assembled using P-NCS/C/CNT and activated carbon,which renders an energy density of 34.875 W·h∙kg^(-1)at a power density of 375 W∙kg^(-1).These results show that as-prepared P-NCS/C/CNT demonstrates incredible possibility as a battery-type electrode for high-performance supercapacitors. 展开更多
关键词 cobalt nickel sulfide phosphorus-doping hybrid supercapacitor carbon nanotube density functional theory
原文传递
Bimetallic nickel cobalt sulfides with hierarchical coralliform architecture for ultrafast and stable Na-ion storage 被引量:1
13
作者 Yanyan He Caifu Dong +5 位作者 Sijia He Huan Li Xiuping Sun Yuan Cheng Guowei Zhou Liqiang Xu 《Nano Research》 SCIE EI CSCD 2021年第11期4014-4024,共11页
A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via sol... A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via solvothermal method. Among the nickel cobalt sulfides with different Ni/Co contents, the coral-like Ni1.01Co1.99S4 (Ni/Co, 1/2) delivers ultrafast and stable Na-ion storage performance (350 mAh·g−1 after 1,000 cycles at 1 A·g−1 and 355 mAh·g−1 at 5 A·g−1). The remarkable electrochemical properties can be attributed to the enhanced conductivity by co-existence of bimetallic components, the unique coral-like micro/nanostructure, which could prevent structural collapse and self-aggregation of nanoparticles, and the easily accessibility of electrolyte, and fast Na+ diffusion upon cycling. Detailed kinetics studies by a galvanostatic intermittent titration technique (GITT) reveal the dynamic change of Na+ diffusion upon cycling, and quantitative kinetic analysis indicates the high contribution of pseudocapacitive behavior during charge-discharge processes. Moreover, the ex-situ characterization analysis results further verify the Na-ion storage mechanism based on conversion reaction. This study is expected to provide a feasible design strategy for the bimetallic sulfides materials toward high performance sodium-ion batteries. 展开更多
关键词 nickel cobalt sulfides hierarchical coralliform architecture sodium-ion batteries anode materials pseudocapacitive behavior
原文传递
Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting 被引量:1
14
作者 Kena Wu Xiaonan Wei +1 位作者 Deng Li Peng Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期270-276,共7页
Developing bifunctional electrocatalysts with improved efficiency and stability in overall water splitting is of extreme importance for renewable energy utilization.In this work,an in situ N doping strategy was demons... Developing bifunctional electrocatalysts with improved efficiency and stability in overall water splitting is of extreme importance for renewable energy utilization.In this work,an in situ N doping strategy was demonstrate to boost the efficiency and stability of nickel molybdenum sulfide both in electrocatalytic hydrogen evolution reaction and oxygen evolution reaction.Experimental and theoretical results indicate that such modification offers enriched active sites for electrochemical reaction,and further increases the kinetic driven force of water electrolysis.As a result,the N–NiMoS electrode exhibits a remarkably improved performance with rather low potential of 1.54 V to offer a current density of 10 mA cm;for overall water splitting,which is 130 mV decrease than that of pristine one.In addition,impressive electrochemical stability also reveals a 76.6%preservation of initial current density after 100 h test,which is superior than that of pristine one after 25 h test.Therefore,the potential to enhance the performance of electrocatalysts by as-proposed route promises a valuable way to develop efficient catalysts with enhanced property for electrochemical applications. 展开更多
关键词 Bifunctional electrocatalyst Water splitting Nitrogen incorporation nickel molybdenum sulfide
原文传递
Mo-doped one-dimensional needle-like Ni_(3)S_(2) as bifunctional electrocatalyst for efficient alkaline hydrogen evolution and overall-water-splitting
15
作者 Junjie Huang Yupeng Xing +5 位作者 Jinzhao Huang Fei Li Gang Zhao Xingmin Yu Binxun Li Xinran Zhang 《ChemPhysMater》 2024年第1期74-82,共9页
Hydrogen energy plays an important role in clean energy system and is considered the core energy source for future technological development owing to its lightweight nature,high calorific value,and clean combustion pr... Hydrogen energy plays an important role in clean energy system and is considered the core energy source for future technological development owing to its lightweight nature,high calorific value,and clean combustion products.The electrocatalytic conversion of water into hydrogen is considered a highly promising method.An electrocatalyst is indispensable in the electrocatalytic process,and finding an efficient electrocatalyst is essential.However,the current commercial electrocatalysts(such as Pt/C and Ru)are expensive;therefore,there is a need to find an inexpensive and efficient electrocatalyst with high stability,corrosion resistance,and high electrocatalytic efficiency.In this study,we developed a cost-effective bifunctional electrocatalyst by incorporating molybdenum into nickel sulfide(Ni_(3)S_(2))and subsequently tailoring its structure to achieve a one-dimensional(1D)needle-like configuration.The hydrogen production efficiency of nickel sulfide was improved by changing the ratio of Mo doping.By analyzing the electrochemical performance of different Mo-doped catalysts,we found that the Ni_(3)S_(2)-Mo-0.1 electrocatalyst exhibited the best electrocatalytic effect in 1 M KOH;at a current density of 10 mA cm^(-2),it exhibited overpotentials of 120 and 279 mV for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively;at a higher current density of 100 mA cm^(-2),the HER and OER overpotentials were 396 and 495 mV,respectively.Furthermore,this electrocatalyst can be used in a two-electrode water-splitting system.Finally,we thoroughly investigated the mechanism of the overall water splitting of this electrocatalyst,providing valuable insights for future hydrogen production via overall-water-splitting. 展开更多
关键词 Hydrogen evolution reaction Molybdenum doped nickel sulfide Overall water splitting Needle-like multistage structure
原文传递
Metal-organic frameworks derived low-crystalline NiCo_(2)S_(4)/Co_(3)S_(4) nanocages with dual heterogeneous interfaces for high-performance supercapacitors 被引量:1
16
作者 Zixin Jia Youning Wang +7 位作者 Jiaqi Chen Zhijie Cao Shugang Pan Yan Zhou Jingwen Sun Junwu Zhu Xin Wang Yongsheng Fu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期152-158,共7页
Nickel cobalt bimetallic heterogeneous sulfides are attractive battery-type materials for electrochemical energy storage.However,the precise synthesis of electrode materials that integrate highly efficient ions/electr... Nickel cobalt bimetallic heterogeneous sulfides are attractive battery-type materials for electrochemical energy storage.However,the precise synthesis of electrode materials that integrate highly efficient ions/electrons diffusion with abundant charge transfer channels has always been challenging.Herein,an effective and concise controllable hydrothermal approach is reported for tuning the crystalline and integrated structures of MOF-derived bimetallic sulfides to accelerate the charge transfer kinetics,and thus enabling rich Faradaic redox reaction.The as-obtained low-crystalline heterogeneous NiCo_(2)S_(4)/Co_(3)S_(4)nanocages exhibit a high specific capacity(1023 C/g at 1 A/g),remarkable rate performance(560 C/g at 10A/g),and outstanding cycling stability(89.6%retention after 5000 cycles).Furthermore,hybrid supercapacitors fabricated with NiCo_(2)S_(4)/Co_(3)S_(4)and nitrogen-doped reduced graphene oxide display an outstanding energy density of 40.8 Wh/kg at a power density of 806.3 W/kg,with an excellent capacity retention of 88.3%after 10000 charge-discharge cycles. 展开更多
关键词 Metal-organic frameworks nickel cobalt heterogeneous sulfides Low-crystalline nanostructure High-performance supercapacitors High energy density
原文传递
Multi-interface collaboration of graphene cross-linked NiS-NiS_(2)-Ni_(3)S_(4) polymorph foam towards robust hydrogen evolution in alkaline electrolyte 被引量:3
17
作者 Haiqing Wang Wenjing Zhang +4 位作者 Xiaowei Zhang Shuxian Hu Zhicheng Zhang Weijia Zhou Hong Liu 《Nano Research》 SCIE EI CSCD 2021年第12期4857-4864,共8页
Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulatio... Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulation of water dissociation, hydrogen recombination, and hydroxyl desorption. Herein, we develop a multi-interface engineering strategy to make an elaborate balance for the alkaline hydrogen evolution reaction (HER) kinetics. The graphene cross-linked three-phase nickel sulfide (NiS-NiS_(2)-Ni_(3)S_(4)) polymorph foam (G-NNNF) was constructed through hydrothermal sulfidation of graphene wrapped nickel foam as a three-dimensional (3D) scaffold template. The G-NNNF exhibits superior catalytic activity toward HER in alkaline electrolyte, which only requires an overpotential of 68 mV to drive 10 mA·cm^(−2) and is better than most of the recently reported metal sulfides catalysts. Density functional theory (DFT) calculations verify the interfaces between nickel sulfides (NiS/NiS_(2)-Ni_(3)S_(4)) and cross-linked graphene can endow the electrocatalyst with preferable hydrogen adsorption as well as metallic nature. In addition, the electron transfer from Ni_(3)S_(4)/NiS_(2) to NiS results in the electron accumulation on NiS and the hole accumulation on Ni_(3)S_(4)/NiS_(2), respectively. The electron accumulation on NiS favors the optimization of the H* adsorption, whereas the hole accumulation on Ni_(3)S_(4) is beneficial for the adsorption of H_(2)O. The work about multi-interface collaboration pushes forward the frontier of excellent polymorph catalysts design. 展开更多
关键词 hydrogen evolution reaction nickel sulfide interface engineering POLYMORPH HETEROINTERFACE
原文传递
Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition 被引量:3
18
作者 Chen Dai Bo Li +4 位作者 Jia Li Bei Zhao Ruixia Wu Huifang Ma Xidong Duan 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2506-2511,共6页
Mulitipe stoichiometric ratio of two-dimensional(2D)transition metal dichalcogenides(TMDCs)attracted considerable interest for their unique chemical and physical properties.Here we developed a chemical vapor depositio... Mulitipe stoichiometric ratio of two-dimensional(2D)transition metal dichalcogenides(TMDCs)attracted considerable interest for their unique chemical and physical properties.Here we developed a chemical vapor deposition(CVD)method to controllably synthesize ultrathin NiS and NiS2 nanoplates.By tuning the growth temperature and the amounts of the sulfur powder,2D nonlayered NiS and NiS2 nanoplates can be selectively prepared with the thickness of 2.0 and 7.0 nm,respectively.X-ray diffraction(XRD)and transmission electron microscopy(TEM)characterization reveal that the 2D NiS and N1S2 nanoplates are high-quality single crystals in the hexagonal and cubic phase,respectively.Electrical transport studies show that electrical conductivities of the 2D NiS and N1S2 nanoplates are as high as 4.6 x 10^5 and 6.3 x 10^5 S·m^-1,respectively.The electrical results demonstrate that the synthesized metallic NiS and NiS2 could serve as good electrodes in 2D electronics. 展开更多
关键词 two-dimensional(2D)non-layerd materials multi stoichiometries chemical vapor deposition nickel sulfides high conductivity
原文传递
Defective Ni_(3)S_(2)nanowires as highly active electrocatalysts for ethanol oxidative upgrading 被引量:2
19
作者 Yufeng Zhang Wei Zhu +9 位作者 Jinjie Fang Zhiyuan Xu Yanrong Xue Di Liu Rui Sui Qingqing Lv Xuerui Liu Yongsheng Wang Wei Chen Zhongbin Zhuang 《Nano Research》 SCIE EI CSCD 2022年第4期2987-2993,共7页
Electrochemical upgrading of biomass ethanol to value-added chemicals is promising for sustainable society.Here,we synthesize defective Ni_(3)S_(2) nanowires(NWs),which show high activity towards electrochemical oxida... Electrochemical upgrading of biomass ethanol to value-added chemicals is promising for sustainable society.Here,we synthesize defective Ni_(3)S_(2) nanowires(NWs),which show high activity towards electrochemical oxidation of ethanol to acetate.The Ni_(3)S_(2) NWs are formed by the oriented attachment mechanism,and rich defects are introduced during the growth.A low onset potential of 1.31 V and high mass activity of 8,716 mA·mgNi^(-1) at 1.5 V are achieved using the synthesized Ni_(3)S_(2) NWs toward the ethanol electro-oxidation,which are better than the Ni(OH)2 NWs and the Ni_(3)S_(2) nanoparticles(NPs).And the selectivity for the acetate generation is ca.99%.The high activity of Ni_(3)S_(2) NWs is attributed to the easier oxidation of Ni(II)to the catalytically active Ni(III)species with the promotion from S component and rich defects.These results demonstrate that the defective NWs can be synthesized by the oriented attachment method and the defective Ni_(3)S_(2) NWs structure as the efficient nonnoble metal electrocatalysts for oxidative upgrading of ethanol. 展开更多
关键词 nickel sulfide ELECTROCATALYST ethanol oxidation defects oriented attachment
原文传递
In situ growth of NiS_(2) nanosheet array on Ni foil as cathode to improve the performance of lithium/sodium-sulfur batteries 被引量:2
20
作者 FAN MouPing CHEN YuanMao +6 位作者 KE Xi HUANG ZeXi CHEN YouChen WU WenLi QU XiaoFeng SHI ZhiCong GUO ZaiPing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第1期231-237,共7页
The NiS;nanosheet array on Ni foil(NiS2/NF)was prepared using an in situ growth strategy and sulfidation method and was used as the cathode of lithium sulfur battery.The unique nanostructure of the NiS;nanosheet array... The NiS;nanosheet array on Ni foil(NiS2/NF)was prepared using an in situ growth strategy and sulfidation method and was used as the cathode of lithium sulfur battery.The unique nanostructure of the NiS;nanosheet array can provide abundant active sites for the adsorption and chemical action of polysulfides.Compared with the sulfur powder coated pure NF(pure NF-S)for lithium sulfur battery,the sulfur powder coated NiS_(2)/NF(NiS_(2)/NF-S)electrode exhibits superior electrochemical performance.Specifically,the NiS_(2)/NF-S delivered a high reversible capacity of 1007.5 m Ah g^(-1) at a current density of 0.1 C(1 C=1675 mA g^(-1))and kept 74.5% of the initial capacity at 1.0 C after 200 cycles,indicating the great promise of NiS_(2)/NF-S as the cathode of lithium sulfur battery.In addition,the NiS_(2)/NF-S electrode also showed satisfactory electrochemical performance when used as the cathode for sodium sulfur battery. 展开更多
关键词 nickel sulfides lithium sulfur battery sodium sulfur battery nanosheet array structure electrochemical performance
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部