Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the...Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided.展开更多
Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,c...Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed.展开更多
In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are su...In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are submicron-sized particles and the particle sizes increase with the increase of Ni content.LiNi0.85Co0.075Mn0.075O2 delivers a discharge capacity of 174.9 mAh g-1 with holding 93% reversible capacity at 1 C after 80 cycles, and can maintain a discharge capacity of 175.3 mAh g-1 at 5 C rate. With increasing Ni content, the initial specific capacity increases while the cycling and rate performance degrades in some extent. These satisfying results demonstrate that spray pyrolysis is a powerful and efficient synthesis technology for producing Ni-rich layered cathode(Ni content 〉 80%).展开更多
Ni-rich layered oxide LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(x≥0.8)is the most promising cathodes for future high energy automotive lithium-ion batteries.However,its application is hindered by the undesirable cycle stability,...Ni-rich layered oxide LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(x≥0.8)is the most promising cathodes for future high energy automotive lithium-ion batteries.However,its application is hindered by the undesirable cycle stability,mainly due to the irreversible structure change at high voltage.Herein,we demonstrate that F substitution with the appropriate amount(1 at%)is capable for improve the electrochemical performance of LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2) cathode significantly.It is revealed that F substitution can reduce cation mixing,stabilize the crystal structure and improve Li transport kinetics.The resulted LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(1.99)F_(0.01)cathode can deliver a high capacity of 194.4 mAh g^(-1) with capacity retention of 95.5%after 100 cycles at 2 C and 165.2 mAh g^(-1) at 5 C.In-situ synchrotron X-ray technique proves that F ions in the cathode materials can suppress the irreversible phase transition from H2 phase to H3 phase in high voltage region by preventing oxygen gliding in a-b planes,ensuring a long-term cycle stability.展开更多
The layered LiNi0.6Co0.2Mn0.2-yMgyO2-zFz(0≤y≤0.12, 0≤z≤0.08) cathode materials were synthesized by combining co-precipitation method and high temperature solid-state reaction, with the help of the ball milling, ...The layered LiNi0.6Co0.2Mn0.2-yMgyO2-zFz(0≤y≤0.12, 0≤z≤0.08) cathode materials were synthesized by combining co-precipitation method and high temperature solid-state reaction, with the help of the ball milling, to investigate the effects of F-Mg doping on LiNi0.6Co0.2Mn0.2O)2. Compared with previous studies, this doping treatment provides substantially improved electrochemical performance in terms of initial coulombic efficiency and cycle performance. The LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 electrode delivers an high capacity retention of 98.6% during the first cycle and a discharge capacity of 189.7 m A·h/g(2.8-4.4 V at 0.2 C), with the capacity retention of 96.3% after 100 cycles. And electrochemical impedance spectroscopy(EIS) results show that Mg-F co-doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance. It is demonstrated that LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 is a promising cathode material for lithium-ion batteries for excellent electrochemical properties.展开更多
A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co...A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co0.1Mn0.1O2.A new phase La2Li0.5Co0.5O4was observed by XRD,and the content of the new phase could be determined by Retiveld refinement and calculation.The cycle stability of the material is obviously increased from74.3%to95.2%after La-doping,while the initial capacity exhibits a decline trend from202mA·h/g to192mA·h/g.The enhanced cycle stability comes from both of the decrease of impurity and the protection of newly formed La2Li0.5Co0.5O4,which prevents the electrolytic corrosion to the active material.The CV measurement confirms that La-doped material exhibits better reversibility compared with the pristine material.展开更多
Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities,voltage ranges,and low cost.However,serious capacity attenuation and poor rate performance limit their appli...Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities,voltage ranges,and low cost.However,serious capacity attenuation and poor rate performance limit their application.This study proposes a novel strategy to improve the cycle stability of the nickel-rich LiNi0.sCo0.1Mn0.1O2(NCM811)layer material by designing core-shell LiNio.sCoo.1 Mno.102(CS-NCM811).CS-NCM811 is designed by the characteristic reaction between dimethylglyoxime(C4H8N2O2)and nickel ion to form Ni(C4H7N2O2)2-The CS-NCM811 is characterized with high nickel content in its core and high manganese content on its surface,leading to a high capacity and excellent cycle stability.The capacity retention of CS-NCM811 was 72.8%,much higher than that of NCM811(47.1%)after 500 cycles at a rate of 5 C.Not only is this method a no vel strategy to desig n high capacity cathode materials but also provides some new in sights into the cycle stability of nickel-rich layered cathode materials.展开更多
Lithium ion battery cathode material LiNi0.8Co0.1Mn0.1O2(NCM811)was synthe-sized via a spray drying method.The effect of different spray drying flow-rates(200,250,300,and 400 mL·min^-1)on the structural and elect...Lithium ion battery cathode material LiNi0.8Co0.1Mn0.1O2(NCM811)was synthe-sized via a spray drying method.The effect of different spray drying flow-rates(200,250,300,and 400 mL·min^-1)on the structural and electrochemical properties of NCM811 are investigated.We find that the contents of Ni,Co,and Mn in the NCM811 cathode materials do not change significantly with the changing flow-rate,but the lattice parameter and morphology of the materials are significantly affected.Under the optimal spray drying flow-rate(250 mL·min^-1),the obtained NCM811 cathode(250NCM811)exhibits the best crystallinity,with the highest ratio of I(003)/I(104)in the XRD pattern.SEM images reveal the spherical morphology of 250NCM811 and the average diameter of about 5 mm.The results of electrochemical test show that the reversible capacity of 250NCM811 reaches 210 mA·g^-1 at 0.2 C(1 C=280 mA·g^-1).After 100 charge-discharge cycles at 1 C,the battery retains more than 94%of its initial capacity.Overall,spray drying flow-rate demonstrates great effect on the electrochemical properties of NCM811.展开更多
基金supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 6354)partially supported by the AGH University of Krakow under No.16.16.210.476.
文摘Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided.
基金financially supported by the project of International Science&Technology Cooperation of China(No.2019YFE0100200)。
文摘Iron-substituted cobalt-free lithium-rich manganese-based materials,with advantages of high specific capacity,high safety,and low cost,have been considered as the potential cathodes for lithium ion batteries.However,challenges,such as poor cycle stability and fast voltage fade during cycling under high potential,hinder these materials from commercialization.Here,we developed a method to directly coat LiF on the particle surface of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2).A uniform and flat film was successfully formed with a thickness about 3 nm,which can effect-ively protect the cathode material from irreversible phase transition during the deintercalation of Li^(+).After surface coating with 0.5wt%LiF,the cycling stability of Li_(1.2)Ni_(0.15)Fe_(0.1)Mn_(0.55O2) cycled at high potential was significantly improved and the voltage fade was largely suppressed.
基金financial support of the National Basic Research Program of China (2014CB643406)the National Natural Science Foundation of China (51674296, 51704332)+1 种基金the National Postdoctoral Program for Innovative Talents (BX201700290)the Fundamental Research Funds for the Central Universities of Central South University (2017zzts125)
文摘In this study we report a series of nickel-rich layered cathodes LiNi1-2xCoxMnxO2(x = 0.075, 0.05,0.025) prepared from chlorides solution via ultrasonic spray pyrolysis. SEM images illustrate that the samples are submicron-sized particles and the particle sizes increase with the increase of Ni content.LiNi0.85Co0.075Mn0.075O2 delivers a discharge capacity of 174.9 mAh g-1 with holding 93% reversible capacity at 1 C after 80 cycles, and can maintain a discharge capacity of 175.3 mAh g-1 at 5 C rate. With increasing Ni content, the initial specific capacity increases while the cycling and rate performance degrades in some extent. These satisfying results demonstrate that spray pyrolysis is a powerful and efficient synthesis technology for producing Ni-rich layered cathode(Ni content 〉 80%).
基金financially supported by the National Natural Science Foundation of China(No.52071085,51671058)the Science and Technology Commission of Shanghai Municipality(No.19ZR1404200)。
文摘Ni-rich layered oxide LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(x≥0.8)is the most promising cathodes for future high energy automotive lithium-ion batteries.However,its application is hindered by the undesirable cycle stability,mainly due to the irreversible structure change at high voltage.Herein,we demonstrate that F substitution with the appropriate amount(1 at%)is capable for improve the electrochemical performance of LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2) cathode significantly.It is revealed that F substitution can reduce cation mixing,stabilize the crystal structure and improve Li transport kinetics.The resulted LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(1.99)F_(0.01)cathode can deliver a high capacity of 194.4 mAh g^(-1) with capacity retention of 95.5%after 100 cycles at 2 C and 165.2 mAh g^(-1) at 5 C.In-situ synchrotron X-ray technique proves that F ions in the cathode materials can suppress the irreversible phase transition from H2 phase to H3 phase in high voltage region by preventing oxygen gliding in a-b planes,ensuring a long-term cycle stability.
基金Project(1114022-15) supported by the Major Science and Technology Research Projects of Guangxi Province,China
文摘The layered LiNi0.6Co0.2Mn0.2-yMgyO2-zFz(0≤y≤0.12, 0≤z≤0.08) cathode materials were synthesized by combining co-precipitation method and high temperature solid-state reaction, with the help of the ball milling, to investigate the effects of F-Mg doping on LiNi0.6Co0.2Mn0.2O)2. Compared with previous studies, this doping treatment provides substantially improved electrochemical performance in terms of initial coulombic efficiency and cycle performance. The LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 electrode delivers an high capacity retention of 98.6% during the first cycle and a discharge capacity of 189.7 m A·h/g(2.8-4.4 V at 0.2 C), with the capacity retention of 96.3% after 100 cycles. And electrochemical impedance spectroscopy(EIS) results show that Mg-F co-doping decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance. It is demonstrated that LiNi0.6Co0.2Mn0.11Mg0.09O1.96F0.04 is a promising cathode material for lithium-ion batteries for excellent electrochemical properties.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘A series of layered LiNi0.8?xCo0.1Mn0.1LaxO2(x=0,0.01,0.03)cathode materials were synthesized by combining co-precipitation and high temperature solid state reaction to investigate the effect of La-doping on LiNi0.8Co0.1Mn0.1O2.A new phase La2Li0.5Co0.5O4was observed by XRD,and the content of the new phase could be determined by Retiveld refinement and calculation.The cycle stability of the material is obviously increased from74.3%to95.2%after La-doping,while the initial capacity exhibits a decline trend from202mA·h/g to192mA·h/g.The enhanced cycle stability comes from both of the decrease of impurity and the protection of newly formed La2Li0.5Co0.5O4,which prevents the electrolytic corrosion to the active material.The CV measurement confirms that La-doped material exhibits better reversibility compared with the pristine material.
文摘Nickel-rich cathode materials have attracted considerable interest because of their high specific capacities,voltage ranges,and low cost.However,serious capacity attenuation and poor rate performance limit their application.This study proposes a novel strategy to improve the cycle stability of the nickel-rich LiNi0.sCo0.1Mn0.1O2(NCM811)layer material by designing core-shell LiNio.sCoo.1 Mno.102(CS-NCM811).CS-NCM811 is designed by the characteristic reaction between dimethylglyoxime(C4H8N2O2)and nickel ion to form Ni(C4H7N2O2)2-The CS-NCM811 is characterized with high nickel content in its core and high manganese content on its surface,leading to a high capacity and excellent cycle stability.The capacity retention of CS-NCM811 was 72.8%,much higher than that of NCM811(47.1%)after 500 cycles at a rate of 5 C.Not only is this method a no vel strategy to desig n high capacity cathode materials but also provides some new in sights into the cycle stability of nickel-rich layered cathode materials.
基金Supported by the National Natural Science Foundation of China(No.51602310)Fujian Provincial Department of Science and Technology(2019T3017)the DNL Cooperation Fund,CAS(DNL180308)。
文摘Lithium ion battery cathode material LiNi0.8Co0.1Mn0.1O2(NCM811)was synthe-sized via a spray drying method.The effect of different spray drying flow-rates(200,250,300,and 400 mL·min^-1)on the structural and electrochemical properties of NCM811 are investigated.We find that the contents of Ni,Co,and Mn in the NCM811 cathode materials do not change significantly with the changing flow-rate,but the lattice parameter and morphology of the materials are significantly affected.Under the optimal spray drying flow-rate(250 mL·min^-1),the obtained NCM811 cathode(250NCM811)exhibits the best crystallinity,with the highest ratio of I(003)/I(104)in the XRD pattern.SEM images reveal the spherical morphology of 250NCM811 and the average diameter of about 5 mm.The results of electrochemical test show that the reversible capacity of 250NCM811 reaches 210 mA·g^-1 at 0.2 C(1 C=280 mA·g^-1).After 100 charge-discharge cycles at 1 C,the battery retains more than 94%of its initial capacity.Overall,spray drying flow-rate demonstrates great effect on the electrochemical properties of NCM811.