期刊文献+
共找到81,846篇文章
< 1 2 250 >
每页显示 20 50 100
Exogenous addition of nitrate nitrogen regulates the uptake and translocation of lead (Pb) by Iris lacteal Pall. var. chinensis (Fisch.) Koidz.
1
作者 SUN Mengjie GUO Shiwen +1 位作者 XIONG Chunlian LI Pinfang 《Journal of Arid Land》 SCIE CSCD 2023年第2期218-230,共13页
Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush ... Since Pb is a non-biodegradable inorganic pollutant and a non-essential metal,its long-term presence in soil poses a great threat to the environment.Iris lactea Pall.var.chinensis(Fisch.)Koidz.,a perennial dense bush herb with high resistance of Pb and wide adaptability,was used in pot experiments to study the effects of exogenous nitrate N(NO_(3)^(–)-N)on the absorption and transportation of Pb and plant growth under different Pb concentrations.Then,the mechanism of NO_(3)^(-)-N affecting Pb and nutrient uptake and transport was explored.The concentration of Pb in the experiment ranged from 0 to 1600 mg/kg,and the added concentration of NO_(3)^(-)-N was 0.0–0.3 g/kg.The results showed that I.lactea was highly tolerant to Pb,and the shoot fraction was more sensitive to varied Pb concentrations in the soil than the root fraction.This protective function became more pronounced under the condition of raised Pb concentration in the soil.When the concentration of Pb in the soil reached 800 mg/kg,the highest Pb content of I.lactea was found under the condition of 0.1 g/kg of NO–3-N addition.When Pb concentration in the soil increased to 1600 mg/kg,the increase in NO_(3)^(-)-N addition promoted Pb uptake by the root.To ensure the well growth of I.lactea and the effect of remediation of Pb-contaminated soil,the recommended concentration of NO–3-N in the soil is 0.1 g/kg.This result provides a theoretical basis for exogenous N regulation of phytoremediation of Pb-contaminated soil. 展开更多
关键词 Iris lactea nitrate nitrogen plant nutrient lead accumulation ABSORB transport
下载PDF
Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater 被引量:4
2
作者 周健 段送华 +1 位作者 陈垚 胡斌 《Journal of Central South University》 SCIE EI CAS 2009年第S1期368-373,共6页
The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the g... The nitrate nitrogen removal efficiency of iron-carbon micro-electrolysis system was discussed in treating pharmaceutical wastewater with high nitrogen and refractory organic concentration. The results show that the granularity of fillings,pH,volume ratios of iron-carbon and gas-water,and HRT. have significant effects on the nitrogen removal efficiency of iron-carbon micro-electrolysis system. The iron-carbon micro-electrolysis system has a good removal efficiency of pharmaceutical wastewater with high nitrogen and refractory organic concentration when the influent TN,NH4+-N,NO3--N and BOD5/CODCr are 823 mg/L,30 mg/L,793 mg/L and 0.1,respectively,at the granularity of iron and carbon 0.425 mm,pH 3,iron-carbon ratio 3,gas-water ratio 5,HRT 1.5 h,and the removal rates of TN,NH4+-N and NO3--N achieve 51.5%,70% and 50.94%,respectively. 展开更多
关键词 IRON-CARBON MICRO-ELECTROLYSIS nitrogen nitrate nitrogen REMOVAL efficiency REMOVAL rate
下载PDF
Monitoring Soil Nitrate Nitrogen Based on Hyperspectral Data in the Apple Orchards 被引量:2
3
作者 Yu Wei Xicun Zhu +4 位作者 Cheng Li Lizhen Cheng Ling Wang Gengxing Zhao Yuanmao Jiang 《Agricultural Sciences》 2017年第1期21-32,共12页
This paper is aimed to monitor the soil nitrate nitrogen content in the apple orchards rapidly, accurately and in real time by making full use of the effective information of soil spectra. The 96 air-dried soil sample... This paper is aimed to monitor the soil nitrate nitrogen content in the apple orchards rapidly, accurately and in real time by making full use of the effective information of soil spectra. The 96 air-dried soil samples of the apple orchards in Qixia county, Yantai city, Shandong province were used as the data source. Spectral measurements of soil samples were carried out by ASD Fieldspec 3 in the darkroom, and the content of the soil nitrate nitrogen was determined by chemical method. Then the hyperspectral reflectance of soil samples were preprocessed by Multivariate Scatter Correction (MSC) and First Derivative (FD), the correlation analysis was carried out with the soil nitrate nitrogen content. The sensitive wavelength of soil nitrate nitrogen was screened. Finally, the Support Vector Machine (SVM) model for the soil nitrate nitrogen content was established. The results showed that the selected sensitive wavelength were 617 nm, 760 nm, 1239 nm, 1442 nm, 1535 nm, 1695 nm, 1776 nm, 1907 nm and 2088 nm. Hyperspectral monitoring model was established by SVM, in which the prediction set R2 was 0.959, RMSE was 0.281, RPD was 3.835;the correction set R2 was 0.822, RMSE was 0.392, RPD was 2.037. The SVM model could be used to monitor the soil nitrate content accurately. 展开更多
关键词 Hyperspectrum nitrate nitrogen Content Support VECTOR MACHINE SENSITIVE WAVELENGTH
下载PDF
Effect of Deficit Irrigation Practice on Nitrogen Mineralization and Nitrate Nitrogen Leaching under Semi-Arid Conditions
4
作者 Sarvet Jehan Muhammad Iqbal +3 位作者 Tayyaba Samreen Mehwish Liaquat Sehrish Kanwal Munaza Naseem 《Journal of Water Resource and Protection》 2022年第5期385-394,共10页
Agricultural sector acts as a major consumer of water which accounts for 70 percent of global freshwater use. Water scarcity acts as an imminent threat to agriculture, there is a need to use those irrigation and manag... Agricultural sector acts as a major consumer of water which accounts for 70 percent of global freshwater use. Water scarcity acts as an imminent threat to agriculture, there is a need to use those irrigation and management practices that could overcome this overwhelming situation of water scarcity. Lab incubation study was designed to evaluate the effect of different moisture levels (50%, 60%, 70%, 80%, 90%, and 100% FC) on nitrogen mineralization rate. Net nitrogen mineralization was shown at 60% and 80% FC levels. Two optimized irrigation levels (I<sub>0.6</sub> and I<sub>0.8</sub>) along with four levels of dairy manure (10, 15, 20, and 25 Mg ha<sup>-1</sup>) were used in a lysimetric trial. Nitrate-nitrogen was measured at four depths (D<sub>1</sub>: 30 cm, D<sub>2</sub>: 60 cm, D<sub>3</sub>: 90 cm, and D<sub>4</sub>: 120 cm). Results showed strong interaction of irrigation and dairy manure at all depths. Mean maximum nitrate-nitrogen concentration was shown under full irrigation at 120 cm soil depth with the application of DM &reg;25 Mg ha<sup>-1</sup>. Under two levels of deficit irrigation, I0.8 has shown maximum nitrate-nitrogen concentration at 90 cm soil depth with the application of DM25, however, deficit irrigation level I<sub>0.6</sub> restricted nitrate-nitrogen movement up to 60 cm soil depth, and high concentration was found at 30 cm soil depth. We concluded that deficit irrigation practice along with dairy manure resulted in more nitrate-nitrogen in the upper 60 cm layer of soil where it can be more available for the crops. 展开更多
关键词 Dairy Manure Deficit Irrigation nitrogen Mineralization nitrate-nitrogen Leaching
下载PDF
Study on removal of nitrate nitrogen by Iron-Silver Alloy
5
作者 吴依玲 Liu Huaping +2 位作者 Zhu Huanzhi 聂兆广 Hu Yanfang 《石化技术》 CAS 2020年第3期47-48,共2页
With the rapid development of industry,a large number of wastewater discharged from factory production leads to a gradual increase in nitrate content in natural water.Using iron-silver copper alloy as reactant and cat... With the rapid development of industry,a large number of wastewater discharged from factory production leads to a gradual increase in nitrate content in natural water.Using iron-silver copper alloy as reactant and catalyst can effectively reduce the content of nitrate nitrogen in wastewater.The experimental results show that the loading rate of silver is 3% and pH is 2 at room temperature.The maximum removal rate of nitrate nitrogen is 91.09%. 展开更多
关键词 nitrate nitrogen iron-silver alloy DILUTE sulfuric acid SPECTROPHOTOMETRY
下载PDF
Study on Characteristics in the Removal Process of Ammonia Nitrogen and Nitrate Nitrogen by an Isolated Heterotrophic Nitrification-Aerobic Denitrification Strain Rhodococcus Sp.
6
作者 Weisi Li 《Journal of Environmental Protection》 2013年第1期74-79,共6页
Removal of ammonia nitrogen and nitrate nitrogen by an heterotrophic nitrification-aerobic denitrification strain is an economical and effective method. In this article, a kind of heterotrophic nitrification-aerobic d... Removal of ammonia nitrogen and nitrate nitrogen by an heterotrophic nitrification-aerobic denitrification strain is an economical and effective method. In this article, a kind of heterotrophic nitrification-aerobic denitrification strain which has aerobic denitrification and heterotrophic nitrification ability was selected, and then was identified as rhodococcus sp. by 16S rRNA sequencing analysis and morphological observation. After that, carbon source utilization and nitrification- denitrification activity of this strain in different C/N, initial nitrogen concentration were studied. In addition, the assimilation and denitrification activities of ammonia and nitrate were also researched under the condition of nitrate and ammonia coexisted in the solution. The results show that the strain can grow in sodium acetate, glucose, sodium succinate and sodium citrate solutions, and it can not survive in sodium oxalate, sucrose and soluble starch solutions. Initial concentration and C/N were important for nitrogen removal rate. This strain can completely remove nitrate/ammonia when nitrate/ammonia concentration was lower than 15 mg l-1/80 mg l-1. the C/N of 10 and of 12 were the optimum C/N ratio in the nitrate and ammonia removal process respectively. pH value rose up sharply in the denitrification process and it increased relatively slowly in the nitrification process, which shows that pH is one of the most important factor inhibiting the denitrification removal process. Nitrite concentration was much higher in denitrification process than in nitrification process. In addition, this strain gave priority to utilizing ammonia as nitrogen source when ammonia and nitrate coexisted in the solution. 展开更多
关键词 AEROBIC DENITRIFICATION HETEROTROPHIC NITRIFICATION RHODOCOCCUS sp. nitrogen REMOVAL
下载PDF
Seasonal Cycle Analysis of the Nitrate Nitrogen and Nitrite Nitrogen in the Bohai Sea
7
作者 石强 陈江麟 李崇德 《Marine Science Bulletin》 CAS 2002年第1期42-51,共10页
During 1985~1987,the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay,The concentration of nitrate nitr... During 1985~1987,the concentration of nitrate nitrogen was higher in the Laizhou Bay and the Bohai Bay while that of nitrite nitrogen was higher in the Liaodong Bay and the Bohai Bay,The concentration of nitrate nitrogen was highest in winter and lowest in summer while that of nitrite nitrogen was highest in autumn and lowest in spring .the seasonal variation of the concentration of nitrate nitrogen was maximum in the Laizhou Bay and the Bohai Bay while that of the concentration of nitrite nitrogen was maximum in the Liaodong Bay.There was a great difference in the concentration of nitrate nitrogen between the surface and the bottom in autumn and in the concentration of nitrite nitrogen between the surface and the bottom in summer.The main reason for the seasonal variations of the concentration of nitrate nitrogen and nitrite nitrogen was the marine biochemical process.The nitrate nitrogen and nitrite nitrogen in the Bohai Sea basically maintained a quasi-equilibrium state seasonal cycle,The quesi-equilibrium state seasonal cycle of nitrate nitrogen and nitrite nitrogen at the bottom was stable while that at the surface was liable to variations caused by other factors. 展开更多
关键词 硝酸盐氮 亚硝酸盐氮 季节变化 渤海 准平衡态
下载PDF
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
8
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang Zhongming Fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE nitrate transporter nitrogen utilization efficiency
下载PDF
Spatial-temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis
9
作者 Xiu-bo Sun Chang-lai Guo +3 位作者 Jing Zhang Jia-quan Sun Jian Cui Mao-hua Liu 《Journal of Groundwater Science and Engineering》 2023年第1期37-46,共10页
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr... The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August. 展开更多
关键词 GROUNDWATER nitrate SOIL Spatial-temporal variation Geostatistical analysis
下载PDF
OsAMT1.1 Expression by Nitrate-Inducible Promoter of OsNAR2.1 Increases Nitrogen Use Efficiency and Rice Yield
10
作者 JIANG Hongzhen WANG Yamei +7 位作者 LAI Liuru LIU Xintong MIAO Changjian LIU Ruifang LI Xiaoyun TAN Jinfang GAO Zhenyu CHEN Jingguang 《Rice science》 SCIE CSCD 2023年第3期222-234,I0038,共14页
Nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are two main inorganic nitrogen(N)sources during crop growth.Here,we enhanced the expression of OsAMT1.1,which encodes a NH_(4)^(+)transporter,using the NO_(3)^(-)-inducible ... Nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+))are two main inorganic nitrogen(N)sources during crop growth.Here,we enhanced the expression of OsAMT1.1,which encodes a NH_(4)^(+)transporter,using the NO_(3)^(-)-inducible promoter of OsNAR2.1 and an ubiquitin promoter in transgenic rice plants.Under field condition of 120 kg/hm2 N,agronomic N use efficiency,N recovery efficiency and N transport efficiency,and grain yield of the pOsNAR2.1:OsAMT1.1 transgenic lines were increased compared with those of the wild type(WT)and the pUbi:OsAMT1.1 transgenic plants.Under 2.0 mmol/L NO_(3)^(-)+0.5 mmol/L NH_(4)^(+)and 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)conditions of hydroponic culture,compared with the WT,both biomass and total N content were increased in the pOsNAR2.1:OsAMT1.1 transgenic lines.However,biomass was significantly reduced in pUbi:OsAMT1.1 transgenic plants under 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)condition.The lines expressing pOsNAR2.1:OsAMT1.1 exhibited increased OsAMT1.1 expression and 15NH_(4)^(+)influx in roots under both 2.0 mmol/L NO_(3)^(-)+0.5 mmol/L NH_(4)^(+)and 0.5 mmol/L NO_(3)^(-)+2.0 mmol/L NH_(4)^(+)conditions.Our study showed that expression of OsAMT1.1 can be promoted when driven by the OsNAR2.1 promoter,especially under high-level nitrate condition,leading to enhancement of NH_(4)^(+)uptake,N use efficiency and grain yield. 展开更多
关键词 OsAMT1.1 OsNAR2.1 promoter nitrogen use efficiency YIELD RICE
下载PDF
Strategies of selective electroreduction of aqueous nitrate to N_(2) in chloride-free system:A critical review
11
作者 Fukuan Li Weizhe Zhang +2 位作者 Peng Zhang Ao Gong Kexun Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期198-216,共19页
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-... Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation. 展开更多
关键词 nitrate CHLORIDE ELECTROREDUCTION SELECTIVITY nitrogen
下载PDF
Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress andAbiotic Challenges
12
作者 Muhammad Farhan Manda Sathish +10 位作者 Rafia Kiran Aroosa Mushtaq Alaa Baazeem Ammarah Hasnain Fahad Hakim Syed Atif Hasan Naqvi Mustansar Mubeen Yasir Iftikhar Aqleem Abbas Muhammad Zeeshan Hassan Mahmoud Moustafa 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期581-609,共29页
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei... Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture. 展开更多
关键词 Synthetic nitrogen nitrogen signaling sustainable agriculture EUTROPHICATION AMMONIUM nitrate
下载PDF
Nitrogen application levels based on critical nitrogen absorption regulate processing tomatoes productivity, nitrogen uptake, nitrate distributions, and root growth in Xinjiang, China
13
作者 JING Bo SHI Wenjuan DIAO Ming 《Journal of Arid Land》 SCIE CSCD 2023年第10期1231-1244,共14页
The unreasonable nitrogen(N)supply and low productivity are the main factors restricting the sustainable development of processing tomatoes.In addition,the mechanism by which the N application strategy affects root gr... The unreasonable nitrogen(N)supply and low productivity are the main factors restricting the sustainable development of processing tomatoes.In addition,the mechanism by which the N application strategy affects root growth and nitrate distributions in processing tomatoes remains unclear.In this study,we applied four N application levels to a field(including 0(N0),200(N200),300(N300),and 400(N400)kg/hm^(2))based on the critical N absorption ratio at each growth stage(planting stage to flowering stage:22%;fruit setting stage:24%;red ripening stage:45%;and maturity stage:9%).The results indicated that N300 treatment significantly improved the aboveground dry matter(DM),yield,N uptake,and nitrogen use efficiency(NUE),while N400 treatment increased nitrate nitrogen(NO_(3)^(-)-N)residue in the 20–60 cm soil layer.Temporal variations of total root dry weight(TRDW)and total root length(TRL)showed a single-peak curve.Overall,N300 treatment improved the secondary root parameter of TRDW,while N400 treatment improved the secondary root parameter of TRL.The grey correlation coefficients indicated that root dry weight density(RDWD)in the surface soil(0–20 cm)had the strongest relationship with yield,whereas root length density(RLD)in the middle soil(20–40 cm)had a strong relationship with yield.The path model indicated that N uptake is a crucial factor affecting aboveground DM,TRDW,and yield.The above results indicate that N application levels based on critical N absorption improve the production of processing tomatoes by regulating N uptake and root distribution.Furthermore,the results of this study provide a theoretical basis for precise N management. 展开更多
关键词 critical N absorption nitrogen use efficiency(NUE) beta model total root dry weight(TRDW) root growth processing tomato
下载PDF
Nitrate reduction capacity of the oral microbiota is impaired in periodontitis:potential implications for systemic nitric oxide availability
14
作者 Bob T.Rosier William Johnston +9 位作者 Miguel Carda-Diéguez Annabel Simpson Elena Cabello-Yeves Krystyna Piela Robert Reilly Alejandro Artacho Chris Easton Mia Burleigh Shauna Culshaw Alex Mira 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第1期52-61,共10页
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial comp... The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity(NRC)and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitratereducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals(P < 0.05 in all five datasets with n = 20–82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate(a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment(P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria(P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies. 展开更多
关键词 IMPAIRED INTAKE nitrate
下载PDF
Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts:a review
15
作者 Jinchen Li Mengmeng Yuan +3 位作者 Nan Meng Hehe Li Jinyuan Sun Baoguo Sun 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期556-567,共12页
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu... Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research. 展开更多
关键词 Non-Saccharomyces yeasts nitrogen Fermentation kinetics nitrogen preference Wine aroma
下载PDF
Irrigation and nitrogen fertiliser optimisation in protected vegetable fields of northern China:Achieving environmental and agronomic sustainability
16
作者 Bingqian Fan Yitao Zhang +8 位作者 Owen Fenton Karen Daly Jungai Li Hongyuan Wang Limei Zhai Xiaosheng Luo Qiuliang Lei Shuxia Wu Hongbin Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1022-1033,共12页
Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigati... Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigation management in different soil types is crucial to reduce future N loads from such systems.The present 4-year study examined leached N loads from lysimeter monitoring arrays set up across 18 protected vegetable system sites encompassing the dominant soil types of northern China.The treatments applied at each field site were:1) a high N and high irrigation input treatment (HNHI);2) a low N but high irrigation input treatment (LNHI) and 3) a low N with low irrigation input treatment (LNLI).Results showed that the mean annual leached total nitrogen loads from the HNHI,LNHI and LNLI treatments were 325,294 and 257 kg N ha^(–1) in the fluvo-aquic soil,114,100 and 78 kg N ha^(–1) in the cinnamon soil and 79,68 and 57 kg N ha^(–1) in the black soil,respectively.The N dissolved in irrigation water in the fluvo-aquic soil areas was 8.26-fold higher than in the cinnamon areas.A structural equation model showed that N fertiliser inputs and leaching water amounts explained 14.7 and 81.8%of the variation of leached N loads,respectively.Correspondingly,reducing irrigation water by 21.5%decreased leached N loads by 20.9%,while reducing manure N and chemical N inputs by 22 and 25%decreased leached N loads by only 9.5%. This study highlights that protected vegetable fields dominated by fluvo-aquic soil need management to curtail leached N losses in northern China. 展开更多
关键词 agriculture water quality nitrate GROUNDWATER irrigation management
下载PDF
Genetic and Agronomic Parameter Estimates of Growth, Yield and Related Traits of Maize (Zea mays L.) under Different Rates of Nitrogen Fertilization
17
作者 Prince Emmanuel Norman Lansana Kamara +6 位作者 Aloysius Beah Kelvin Sahr Gborie Francess Sia Saquee Sheku Alfred Kanu Fayia Augustine Kassoh Yvonne Sylvia Gloria Ethel Norman Abdul Salaam Kargbo 《American Journal of Plant Sciences》 CAS 2024年第4期274-291,共18页
This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in... This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize. 展开更多
关键词 nitrogen Rates Genetic and Agronomic Estimates Introduced Genotypes Grain Yield Zea mays
下载PDF
Identifying the Hydrochemical Characteristics,Genetic Mechanisms and Potential Human Health Risks of Fluoride and Nitrate Enriched Groundwater in the Tongzhou District,Beijing,North China
18
作者 ZHANG Shouchuan LIU Kai +2 位作者 MA Yan WANG Luyao SUN Junliang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期468-476,共9页
Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas an... Fluoride and nitrate enriched groundwater are potential threats to the safety of the groundwater supply that may cause significant effects on human health and public safety,especially in aggregated population areas and economic hubs.This study focuses on the high F^(−)and NO_(3)^(−)concentration groundwater in Tongzhou District,Beijing,North China.A total of 36 groundwater samples were collected to analyze the hydrochemical characteristics,elucidate genetic mechanisms and evaluate the potential human health risks.The results of the analysis indicate:Firstly,most of the groundwater samples are characterized by Mg-HCO_(3) and Na-HCO_(3) with the pH ranging from 7.19 to 8.28 and TDS with a large variation across the range 471-2337 mg/L.The NO_(3)^(−)concentration in 38.89%groundwater samples and the F^(−)concentration in 66.67%groundwater samples exceed the permissible limited value.Secondly,F^(−)in groundwater originates predominantly from water-rock interactions and the fluorite dissolution,which is also regulated by cation exchange,competitive adsorption of HCO_(3)−and an alkaline environment.Thirdly,the effect of sewage disposal and agricultural activities have a significant effect on high NO3-concentration,while the high F^(−)concentration is less influenced by anthropogenic activity.The alkaline environment favors nitrification,thus being conducive to the production of NO_(3)^(−).Finally,the health risk assessment is evaluated for different population groups.The results indicate that high NO_(3)^(−)and F^(−)concentration in groundwater would have the largest threat to children’s health.The findings of this study could contribute to the provision of a scientific basis for groundwater supply policy formulation relating to public health in Tongzhou District. 展开更多
关键词 fluoride concentration nitrate pollution genetic mechanism health risk assessment Tongzhou District
下载PDF
Assessment of Nitrates and Nitrites in Borehole Water from the Southern and the Northern Region of Côte d’Ivoire (West Africa)
19
作者 Jean Stéphane Claon Kouassi Kouakou Serge +5 位作者 Sérikipré Laurent Seka M’Bassidjé Arsène N’Guettia Kossonou Roland Traoré Aïcha Djamanallico Joseph Kouadio Kouakou Luc 《Open Journal of Modern Hydrology》 CAS 2024年第2期87-105,共19页
This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the South... This study aimed to evaluate the quality of water from village boreholes by measuring physicochemical parameters such as nitrates, nitrites, and total organic carbon (TOC). Forty-five (45) village pumps from the Southern (Basse Côte) and the Northern (Korhogo) region of Cte d’Ivoire (west Africa) were sampled. Physicochemical parameters such as temperature, pH, conductivity at 25˚C, and turbidity were determined in situ, while nitrite and nitrate were analyzed according to ISO 10304-1 (2007) standard and total organic carbon (TOC) by NF EN 1484 (1997) standard. The results showed that the borehole waters of the Basse Côte and Korhogo analyzed are acidic, with an average temperature of 27.51˚C ± 0.16˚C and 29.95˚C ± 0.51˚C respectively for the Basse Côte and Korhogo regions. The borehole waters of the Basse Côtedo not contain nitrites, while those of Korhogo have average nitrite contents of 0.32 mg/l. The average nitrate rate in the waters of the Basse Côte and Korhogo are 12.08 ± 2.11 mg/l and 11.03 ± 3.18 mg/l respectively. The average TOC concentration of the waters of the Basse Côte is 1.28 ± 0.32 mg/l and that of Korhogo is 0.56 ± 0.09 mg/L. The study showed that the borehole waters of the Basse Côte and Korhogo have average temperatures between 27.4˚C and 29.95˚C with a slightly acidic pH value and acceptable salinity. The TOC concentrations obtained at the different sampling points were all below the French standard (2 mg/L) except for certains pumps of the Basse Côte. The water samples from the Basse Côte were devoid of nitrite. On the other hand, those from Korhogo revealed the presence of nitrite. Also, the borehole waters of the regions of the Basse Côte and Korhogo contain relatively high nitrate contents, presumably due to anthropometric activity. Overall, our study on the quality of drinking water showed that the waters analyzed are in compliance with international standards and safe for consumption. 展开更多
关键词 Drinking Water pH TURBIDITY TOC nitrateS NITRITES Health Effect
下载PDF
Preliminary discussion on the ignition mechanism of exploding foil initiators igniting boron potassium nitrate
20
作者 Haotian Jian Guoqiang Zheng +4 位作者 Lejian Chen Zheng Ning Guofu Yin Peng Zhu Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期222-231,共10页
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig... Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success. 展开更多
关键词 Exploding foil initiator PDV Plasma spectrum Ignition mechanism Boron potassium nitrate
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部