期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fuzzy c-means clustering with non local spatial information for noisy image segmentation 被引量:33
1
作者 Feng Zhao (1) add_zf1119@hotmail.com Licheng Jiao (1) Hanqiang Liu (1) 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第1期45-56,共12页
As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome t... As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy c- means clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation. 展开更多
关键词 image segmentation fuzzy clustering algo-rithm non local spatial information magnetic resonance(MR) image
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部