New approaches are required to prevent the plagues of locusts that threaten crop security in many areas of the world. One such approach is to exploit the phototactic response of locusts, enabling their aggregation and...New approaches are required to prevent the plagues of locusts that threaten crop security in many areas of the world. One such approach is to exploit the phototactic response of locusts, enabling their aggregation and effective removal from agricultural sites. This study examined the effect of the dorsal rim area (DRA) of the locust compound eye on the phototactic response of locusts to spectral light. Locusts with intact DRA showed increased phototactic responses to blue, green or orange light but decreased responses to UV and violet light, whereas locusts with blacked-out DRA (non-DRA vision) showed the strongest phototactic responses to orange followed by violet light. The combined results revealed that phototactic push-pull effect triggered by responses of DRA versus non-DRA vision was strongest in response to violet light. Compound vision in the locust is the result of the synergism between DRA versus non-DRA vision, causing a push-pull phototactic effect that is most stimulated by exposure to violet light, with light intensity enhancing this effect. These results provide theoretical support for the induction of phototaxis and polarotaxis in response to light in locusts, which could be useful for the development of light-based control systems in the field.展开更多
Locust and grasshopper plagues pose a serious threat to crop production in many areas worldwide.However,there is a lack of effective,quick-acting methods to control such outbreaks.Methods exploiting the phototactic re...Locust and grasshopper plagues pose a serious threat to crop production in many areas worldwide.However,there is a lack of effective,quick-acting methods to control such outbreaks.Methods exploiting the phototactic response of these insects are receiving increasing attention.The current study investigated the effect of linearly polarized and unpolarized light on locust phototactic and polarotactic responses,in particular the function of their dorsal rim area(DRA)and non-DRA visual fields.The results showed that the polarotactic function weight of DRA vision was stimulated by linearly polarized ultraviolet(UV)and violet light,the phototactic function weight was induced by blue,green,and orange light,and under linearly polarized light,the functional effect of DRA vision was strongest in response to linearly polarized violet light.Moreover,the locust visual response effect was related to spectral light attributes,with the linear polarization effect intensifying in response to the short-range vision sensitivity of non-DRA visual fields,whereas DRA vision regulated the short-range sensitivity of compound eye vision.When illumination increased,the synergistic enhancement effects of linearly polarized ultraviolet and violet light were significant,whereas the visual sensitivity was restricted significantly by linearly polarized blue,green,or orange light.Thus,non-DRA vision determined,while DRA vision enhanced,the phototactic response sensitivity,whereas,in linearly polarized UV or violet light,non-DRA vision determined,while DRA vision enhanced,the visual trend and polarotaxic aggregation sensitivity,with opposite effects in linearly polarized blue,green,or orange light.When illumination increased,there was a driving effect caused by linearly polarized violet light on non-DRA vision,whereas at short-wave lengths,the control effect induced by linearly polarized orange light was optimal;however,the photo-induced effect of linearly polarized violet light and the visual distance control effect of linearly polarized orange light were optimal.These results provide theoretical support for the photo-induced mechanism of the locust visual response effect and for the development of linearly polarized light sources for the environmentally friendly prevention and control of locust populations.展开更多
基金supported by the Scientific and Technological Project of Henan Province,China(Grant No.242102111179,222102210116,222102320080)the Natural Science Foundation Project of Henan Province,China(Grant No.232300420024)the National Natural Science Foundation of China(Grant No.31772501).
文摘New approaches are required to prevent the plagues of locusts that threaten crop security in many areas of the world. One such approach is to exploit the phototactic response of locusts, enabling their aggregation and effective removal from agricultural sites. This study examined the effect of the dorsal rim area (DRA) of the locust compound eye on the phototactic response of locusts to spectral light. Locusts with intact DRA showed increased phototactic responses to blue, green or orange light but decreased responses to UV and violet light, whereas locusts with blacked-out DRA (non-DRA vision) showed the strongest phototactic responses to orange followed by violet light. The combined results revealed that phototactic push-pull effect triggered by responses of DRA versus non-DRA vision was strongest in response to violet light. Compound vision in the locust is the result of the synergism between DRA versus non-DRA vision, causing a push-pull phototactic effect that is most stimulated by exposure to violet light, with light intensity enhancing this effect. These results provide theoretical support for the induction of phototaxis and polarotaxis in response to light in locusts, which could be useful for the development of light-based control systems in the field.
基金The authors acknowledge that this work was financially supported by the Scientific and Technological Project of Henan Province,China(Grant No.222102210116,212102110229)the special project of Xinxiang Science and Technology of Henan Province,China(Grant No.21ZD003)the National Natural Science Foundation of China(Grant No.31772501).
文摘Locust and grasshopper plagues pose a serious threat to crop production in many areas worldwide.However,there is a lack of effective,quick-acting methods to control such outbreaks.Methods exploiting the phototactic response of these insects are receiving increasing attention.The current study investigated the effect of linearly polarized and unpolarized light on locust phototactic and polarotactic responses,in particular the function of their dorsal rim area(DRA)and non-DRA visual fields.The results showed that the polarotactic function weight of DRA vision was stimulated by linearly polarized ultraviolet(UV)and violet light,the phototactic function weight was induced by blue,green,and orange light,and under linearly polarized light,the functional effect of DRA vision was strongest in response to linearly polarized violet light.Moreover,the locust visual response effect was related to spectral light attributes,with the linear polarization effect intensifying in response to the short-range vision sensitivity of non-DRA visual fields,whereas DRA vision regulated the short-range sensitivity of compound eye vision.When illumination increased,the synergistic enhancement effects of linearly polarized ultraviolet and violet light were significant,whereas the visual sensitivity was restricted significantly by linearly polarized blue,green,or orange light.Thus,non-DRA vision determined,while DRA vision enhanced,the phototactic response sensitivity,whereas,in linearly polarized UV or violet light,non-DRA vision determined,while DRA vision enhanced,the visual trend and polarotaxic aggregation sensitivity,with opposite effects in linearly polarized blue,green,or orange light.When illumination increased,there was a driving effect caused by linearly polarized violet light on non-DRA vision,whereas at short-wave lengths,the control effect induced by linearly polarized orange light was optimal;however,the photo-induced effect of linearly polarized violet light and the visual distance control effect of linearly polarized orange light were optimal.These results provide theoretical support for the photo-induced mechanism of the locust visual response effect and for the development of linearly polarized light sources for the environmentally friendly prevention and control of locust populations.