The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes ...Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes to the exacerbation of carrier recombination,and the defects between the perovskite and electron transport layer(ETL)interfaces significantly decrease the efficiency of the devices.In this study,a bifunctional surface passivation approach is proposed by applying a thioacetamide(TAA)surfactant on the mesoporous TiO_(2)interface.The results demonstrate that TAA molecules could interact with TiO_(2),thereby diminishing the oxygen vacancy defects.Additionally,the amino group and sulfur atoms in TAA molecules act as Lewis base to effectively passivate the uncoordinated Pb^(2+)in perovskite and improve the morphology of perovskite,and decrease the trap-state density of perovskite.The TAA passivation mechanism improves the alignment of energy levels between TiO_(2)and perovskite,facilitating electron transport and reducing carrier recombination.Consequently,the TAA-passivated device achieved a champion power conversion efficiency(PCE)of 17.86%with a high fill factor(FF)of 79.16%and an open-circuit voltage(V_(OC))of 0.971 V.This investigation presents a feasible strategy for interfacial passivation of the ETL to further improve the efficiency of PM-PSCs.展开更多
Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes th...Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.展开更多
Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface ...Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.展开更多
In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dis...In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model,whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges.Initially,the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at~255 mV.The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface.During the pseudo passivation,an intense current oscillation is observed.Further,blink-like color changes between yellow and dark blue are revealed for the first time,implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups.The as-formed ZnOs then experience a dissolution-reformation evolution,during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies.Eventually,oxide densification is realized,contributing to the Zn passivation.This study provides new insights into the Zn dissolution-passivation behavior,which is critical for the future optimization of Zn batteries.展开更多
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b...Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.展开更多
Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of res...Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of research.Yet,their stability remains a barrier to industrial application.This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells.By bulk and surface passivation,defect density is reduced,followed by a"passivation cleaning"using Apacl amino acid salt and isopropyl alcohol to refine film surface quality.Employing X-ray diffraction(XRD),scanning electron microscope(SEM),and atomic force microscopy(AFM),we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination,achieving 22.6%efficiency for perovskite solar cells with the composition Cs_(0.15)FA_(0.85)PbI_(3).Crucially,the stability of treated cells in long-term tests has been markedly enhanced,laying groundwork for industrial viability.展开更多
Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-per...Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.展开更多
Ag substitution in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising way to mitigate Cu/Zn related defects,electrostatic fluctuations and Shockley-Read-Hall(SRH)recombination centers.However,high performance ACZTSSe solar ce...Ag substitution in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising way to mitigate Cu/Zn related defects,electrostatic fluctuations and Shockley-Read-Hall(SRH)recombination centers.However,high performance ACZTSSe solar cells are generally demonstrated with more Ag amounts and strenuous fabrication processes,which are not ideal when using cheap constituent materials CZTSSe.To reduce the Ag amount(2%-3%),local Ag substitutions into CZTSSe at front(F),back(B)and dual front/back(FB)were proposed.Experimental results revealed that F-passivation effectively reduced the Cu/Zn related defects and further limits the interface/bulk recombination whereas B-passivation improved the grain growth at the back interface and further allows enhanced transport of charge carriers.By employing the dual Agpassivation approach,the final ACZTSSe device parameters were significantly improved and remarkable power conversion efficiency(PCE)of 12.43%was achieved with eco-friendly aqueous solution process.展开更多
Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite f...Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities.展开更多
Although metal halide perovskites are increasingly popular for the next generation of efficient photovoltaic devices,the inevitable defects from the preparation process have become the notorious barrier to further imp...Although metal halide perovskites are increasingly popular for the next generation of efficient photovoltaic devices,the inevitable defects from the preparation process have become the notorious barrier to further improvement of performance,which increases non-radiative recombination and lowers the power conversion efficiency of solar cells.Surface passivation strategies have been affirmed as one of the most practical approaches to suppress these defects.Therefore,it is necessary to have a detailed review on the surface passivation to reveal the improvements of the devices.Herein,the mechanism and recent advances of surface passivation have been systematically summarized with respect to various passivation approaches,including the Lewis acid–base,the low-dimensional perovskite,inorganic molecules,and polymers.Finally,the review also offers the research trend and prospects of surface passivation.展开更多
Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel...Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel behavior,they have intrinsic stability issues.In this study,an effectively silane barrier-capped quantum dot(QD@APDEMS)is thinly applied onto a bulk perovskite photosensitive layer for use in photodetectors.QD@APDEMS is synthesized with a silane ligand with hydrophobic CH_(3)-terminal groups,resulting in excellent dispersibility and durability to enable effective coating.The introduction of the QD@APDEMS layer results in the formation of a lowdefect perovskite film with enlarged grains.This is attributed to the grain boundary interconnection effect via interaction between the functional groups of QD@APDEMS and uncoordinated Pb^(2+)in grain boundaries.By passivating the grain boundaries,where various trap sites are distributed,hole chargecarrier injection and shunt leakage can be suppressed.Also,from the energy point of view,the deep highest occupied molecular orbital(HOMO)level of QD@APDEMS can work as a hole charge injection barrier.Improved charge dynamics(generation,transfer,and recombination properties)and reduced trap density of QD@APDEMS are demonstrated.When this perovskite film is used in a photodetector,the device performance(especially the detectivity)stands out among existing perovskites evaluated for energy sensing device applications.展开更多
Due to the solution processable nature,the prepared perovskite films are polycrystalline with considerable number of defects.These defects,especially defects at interface accelerate the carrier recombination and reduc...Due to the solution processable nature,the prepared perovskite films are polycrystalline with considerable number of defects.These defects,especially defects at interface accelerate the carrier recombination and reduce the carrier collection.Besides,the surface defects also affect the long-term stability of the perovskite solar cells(PVSCs).To solve this problem,surface passivation molecules are introduced at selective interface(the interface between perovskite and carrier selective layer).This review summarizes recent progress of small molecules used in PVSCs.Firstly,different types of defect states in perovskite films are introduced and their effects on device performance are discussed.Subsequently,surface passivation molecules are divided into four categories,and the interaction between the functional groups of the surface passivation molecules and selective defect states in perovskite films are highlighted.Finally,we look into the prospects and challenges in design noble small molecules for PVSCs applications.展开更多
Wide-bandgap(WBG)perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large opencircuit voltage(V_(OC))deficits,limiting their photovoltaic performance.Here,we address these iss...Wide-bandgap(WBG)perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large opencircuit voltage(V_(OC))deficits,limiting their photovoltaic performance.Here,we address these issues by in-situ forming a well-defined 2D perovskite(PMA)_(2)PbCl_(4)(phenmethylammonium is referred to as PMA)passivation layer on top of the WBG active layer.The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent.First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase.The(PMA)_(2)PbCl_(4)forms improved type-I energy level alignment with the WBG perovskite,reducing the electron recombination at the perovskite/hole-transport-layer interface.Applying this strategy in fabricating semi-transparent WBG perovskite solar cells(indium tin oxide as the back electrode),the V_(OC)deficits can be reduced to 0.49 V,comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes.Consequently,we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high V_(OC)of 1.23 V.展开更多
Quasi-2D perovskites have attracted tremendous interest for application as lightemission layers in light-emitting diodes(LEDs).However,the heterogeneous n phase and non-uniform distribution still severely limit the fu...Quasi-2D perovskites have attracted tremendous interest for application as lightemission layers in light-emitting diodes(LEDs).However,the heterogeneous n phase and non-uniform distribution still severely limit the further development of quasi-2D perovskite LEDs(Pero-LEDs).Meanwhile,the increased defect density caused by the reduced dimension and grain size induces non-radiative recombination and further deteriorates the device performance.Here,we found that a series of molecules containing phosphoryl chloride functional groups have noticeable enhancement effects on the device performance of quasi-2D Pero-LEDs.Then,we studied the modification mechanism by focusing on the bis(2-oxo-3-oxazolidinyl)phosphinic chloride(BOPCl).It is concluded that the BOPCl can not only regulate the phase distribution by decreasing the crystallization rate but also remain in the grain boundaries and passivate the defects.As a result,the corresponding quasi-2D Pero-LEDs obtained a maximum external quantum efficiency(EQE_(max))of 20.82%and an average EQE(EQE_(ave))of around 20%on the optimal 50 devices,proving excellent reproducibility.Our work provides a new selection of molecular types for regulating the crystallization and passivating the defects of quasi-2D perovskite films.展开更多
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading ...All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid(HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI_2 into highly coordinated [PbI_m]~(2-m), enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on ofurther understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
This work investigates the effect of passivation on the electronic properties of inorganic perovskite CsPbI_(3)materials by using first-principles calculations with density functional theory(DFT).The passivation effec...This work investigates the effect of passivation on the electronic properties of inorganic perovskite CsPbI_(3)materials by using first-principles calculations with density functional theory(DFT).The passivation effect after the addition of Phenylethylamine(PEA+)molecule to CsPbI_(3)(110)surface is studied.The results of density of states(DOS)calculations show that the CsPbI_(3)(110)surface model with I atom terminated reveals new electronic DOS peaks(surface states)near the Fermi level.These surface states are mainly due to the contribution of I-5p orbital and are harmful to the CsPbI_(3)-based solar cells because they reduce the photoelectric conversion efficiency.The surface states near the Fermi level are significantly reduced,and the decline rate reaches 38.8%with the addition with PEA+molecule to the CsPbI3(110)surface.展开更多
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金funded by the Yunnan Yunling Scholars Project,the National Natural Science Foundation of China(No.51562038)the Young-Middle-Aged Academic and Technical Leaders Reserve Talent Project in Yunnan Province(No.202005AC160015)the Yunnan Basic Applied Research Project(No.202101AT070013).
文摘Printable mesoscopic perovskite solar cells(PM-PSCs)possess notable merits in terms of cost-effectiveness,easy manufacturing,and large scale applications.Nevertheless,the absence of a hole transport layer contributes to the exacerbation of carrier recombination,and the defects between the perovskite and electron transport layer(ETL)interfaces significantly decrease the efficiency of the devices.In this study,a bifunctional surface passivation approach is proposed by applying a thioacetamide(TAA)surfactant on the mesoporous TiO_(2)interface.The results demonstrate that TAA molecules could interact with TiO_(2),thereby diminishing the oxygen vacancy defects.Additionally,the amino group and sulfur atoms in TAA molecules act as Lewis base to effectively passivate the uncoordinated Pb^(2+)in perovskite and improve the morphology of perovskite,and decrease the trap-state density of perovskite.The TAA passivation mechanism improves the alignment of energy levels between TiO_(2)and perovskite,facilitating electron transport and reducing carrier recombination.Consequently,the TAA-passivated device achieved a champion power conversion efficiency(PCE)of 17.86%with a high fill factor(FF)of 79.16%and an open-circuit voltage(V_(OC))of 0.971 V.This investigation presents a feasible strategy for interfacial passivation of the ETL to further improve the efficiency of PM-PSCs.
基金supported by the National Natural Science Foundation of China(No.62105277)the Natural Science Foundation of Henan Province(No.232300420139)the Internationalization Training of High-Level Talents of Henan Province,and Nanhu Scholars Program for Young Scholars of XYNU.
文摘Al is considered as a promising lithium-ion battery(LIBs)anode materials owing to its high theoretical capacity and appropri-ate lithation/de-lithation potential.Unfortunately,its inevitable volume expansion causes the electrode structure instability,leading to poor cyclic stability.What’s worse,the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for elec-trons,which brings the voltage dip and results in low reversible capacity.Herein,this work synthesized core-shell Al@C-Sn pellets for LIBs by a plus-minus strategy.In this proposal,the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2,meanwhile,polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alle-viate the volume swellings.Benefiting from the addition of C-Sn shell and the elimination of the Al2O3 passivation layer,the as-prepared Al@C-Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g^(-1) at 0.1 A·g^(-1) and 295.0 mAh·g^(-1) at 2.0 A·g^(-1)(after 1000 cycles),respectively.Moreover,its diffusion-controlled capacity is muchly improved compared to those of its counterparts,confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.
基金National Natural Science Foundation of China (62104136, 22179051, 62204098, 52104258)Project of Shandong Province Higher Educational Young Innovative Team (2022KJ218)+3 种基金China Postdoctoral Science Foundation (2023M732104)Qingdao Postdoctoral Funding Program (QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202303032)Shandong Provincial Natural Science Foundation (ZR2021ME016)。
文摘Rational interface engineering is essential for minimizing interfacial nonradiative recombination losses and enhancing device performance.Herein,we report the use of bidentate diphenoxybenzene(DPOB)isomers as surface modifiers for perovskite films.The DPOB molecules,which contain two oxygen(O)atoms,chemically bond with undercoordinated Pb^(2+) on the surface of perovskite films,resulting in compression of the perovskite lattice.This chemical interaction,along with physical regulations,leads to the formation of high-quality perovskite films with compressive strain and fewer defects.This compressive strain-induced band bending promotes hole extraction and transport,while inhibiting charge recombination at the interfaces.Furthermore,the addition of DPOB will reduce the zero-dimensional(OD) Cs_4PbBr_6 phase and produce the two-dimensional(2D) CsPb_(2)Br_5 phase,which is also conducive to the improvement of device performance.Ultimately,the resulting perovskite films,which are strain-released and defect-passivated,exhibit exceptional device efficiency,reaching 10.87% for carbon-based CsPbBr_(3) device,14.86% for carbon-based CsPbI_(2)Br device,22,02% for FA_(0.97)Cs_(0.03)PbI_(3) device,respectively.Moreover,the unencapsulated CsPbBr_(3) PSC exhibits excellent stability under persistent exposure to humidity(80%) and heat(80℃) for over 50 days.
基金supported by the Research and Development Initiative for Scientific Innovation of New Generation Batteries(RISING)Projects,RISING2[JPNP16001]and RISING3[JPNP21006],commissioned by of the New Energy and Industrial Technology Development Organization(NEDO),Japanthe State Scholarship Fund of the China Scholarship Council[No.201906230294]for their support
文摘In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model,whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges.Initially,the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at~255 mV.The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface.During the pseudo passivation,an intense current oscillation is observed.Further,blink-like color changes between yellow and dark blue are revealed for the first time,implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups.The as-formed ZnOs then experience a dissolution-reformation evolution,during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies.Eventually,oxide densification is realized,contributing to the Zn passivation.This study provides new insights into the Zn dissolution-passivation behavior,which is critical for the future optimization of Zn batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.62321166653,22090044,and 12350410372).Calculations were performed in part at the high-performance computing center of Jilin University.
文摘Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.
基金supported by the National Natural Science Foundation of China(61874008).
文摘Amidst the global energy and environmental crisis,the quest for efficient solar energy utilization intensifies.Perovskite solar cells,with efficiencies over 26%and cost-effective production,are at the forefront of research.Yet,their stability remains a barrier to industrial application.This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells.By bulk and surface passivation,defect density is reduced,followed by a"passivation cleaning"using Apacl amino acid salt and isopropyl alcohol to refine film surface quality.Employing X-ray diffraction(XRD),scanning electron microscope(SEM),and atomic force microscopy(AFM),we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination,achieving 22.6%efficiency for perovskite solar cells with the composition Cs_(0.15)FA_(0.85)PbI_(3).Crucially,the stability of treated cells in long-term tests has been markedly enhanced,laying groundwork for industrial viability.
基金Natural Science Foundation of China (51972278)Outstanding Youth Science and Technology Talents Program of Sichuan (19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology, 21fksy19)。
文摘Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean Government(NRF2021R1A2C1008598)the program of Phased Development of Carbon Neutral Technologies through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT(NRF-2022M3J1A1064220)。
文摘Ag substitution in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising way to mitigate Cu/Zn related defects,electrostatic fluctuations and Shockley-Read-Hall(SRH)recombination centers.However,high performance ACZTSSe solar cells are generally demonstrated with more Ag amounts and strenuous fabrication processes,which are not ideal when using cheap constituent materials CZTSSe.To reduce the Ag amount(2%-3%),local Ag substitutions into CZTSSe at front(F),back(B)and dual front/back(FB)were proposed.Experimental results revealed that F-passivation effectively reduced the Cu/Zn related defects and further limits the interface/bulk recombination whereas B-passivation improved the grain growth at the back interface and further allows enhanced transport of charge carriers.By employing the dual Agpassivation approach,the final ACZTSSe device parameters were significantly improved and remarkable power conversion efficiency(PCE)of 12.43%was achieved with eco-friendly aqueous solution process.
基金supported by the National Key Research and Development Program of China(2021YFB3800103)the Fundamental Research Funds for the Central Universities(000-0903069032)the National Natural Science Foundation of China(52203237).
文摘Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities.
基金The authors acknowledge the Science and Technology Development Fund,Macao SAR(File no.FDCT-0044/2020/A1,FDCT-091/2017/A2,FDCT-014/2017/AMJ,and FDCT-0163/2019/A3),UM’s research fund(File no.MYRG2018-00148-IAPME and SRG2019-00179-IAPME)the Natural Science Foundation of China(61935017,22022309,and 62105292),Natural Science Foundation of Guang-dong Province,China(2019A1515012186 and 2021A1515010024)+2 种基金Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(Category C)(SGDX2020110309360100)Guangdong-Hong Kong-Macao Joint Labora-tory of Optoelectronic and Magnetic Functional Materials(2019B121205002)S.Mei thanks financial support from the Natural Science Foundation of China(62004231).
文摘Although metal halide perovskites are increasingly popular for the next generation of efficient photovoltaic devices,the inevitable defects from the preparation process have become the notorious barrier to further improvement of performance,which increases non-radiative recombination and lowers the power conversion efficiency of solar cells.Surface passivation strategies have been affirmed as one of the most practical approaches to suppress these defects.Therefore,it is necessary to have a detailed review on the surface passivation to reveal the improvements of the devices.Herein,the mechanism and recent advances of surface passivation have been systematically summarized with respect to various passivation approaches,including the Lewis acid–base,the low-dimensional perovskite,inorganic molecules,and polymers.Finally,the review also offers the research trend and prospects of surface passivation.
基金Ministry of Trade,Industry and Energy,Grant/Award Numbers:20017439,20021915National Research Foundation of Korea,Grant/Award Number:2019R1A2C1087653。
文摘Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel behavior,they have intrinsic stability issues.In this study,an effectively silane barrier-capped quantum dot(QD@APDEMS)is thinly applied onto a bulk perovskite photosensitive layer for use in photodetectors.QD@APDEMS is synthesized with a silane ligand with hydrophobic CH_(3)-terminal groups,resulting in excellent dispersibility and durability to enable effective coating.The introduction of the QD@APDEMS layer results in the formation of a lowdefect perovskite film with enlarged grains.This is attributed to the grain boundary interconnection effect via interaction between the functional groups of QD@APDEMS and uncoordinated Pb^(2+)in grain boundaries.By passivating the grain boundaries,where various trap sites are distributed,hole chargecarrier injection and shunt leakage can be suppressed.Also,from the energy point of view,the deep highest occupied molecular orbital(HOMO)level of QD@APDEMS can work as a hole charge injection barrier.Improved charge dynamics(generation,transfer,and recombination properties)and reduced trap density of QD@APDEMS are demonstrated.When this perovskite film is used in a photodetector,the device performance(especially the detectivity)stands out among existing perovskites evaluated for energy sensing device applications.
基金support from Key Program of National Natural Science Foundation of China(22133006)the National Natural Science Foundation of China(ZX20210286)+1 种基金the Fundamental Research Funds for the Central Universities(20CX06004A)Talent Introduction Program of China University of Petroleum(East China)(ZX20190162)and the Post-Graduate Innovation Project of China University of Petroluem(East China)(YCX2021140)are acknowledged.We also thank the support from the Yankuang Group 2019 Science and Technology Program(YKKJ2019AJ05JG-R60).Prof.X.Li and Dr.T.Zhang thank the Taishan Scholar Programof Shandong Province(ts201712019,tsnq201909069)for financial support.
文摘Due to the solution processable nature,the prepared perovskite films are polycrystalline with considerable number of defects.These defects,especially defects at interface accelerate the carrier recombination and reduce the carrier collection.Besides,the surface defects also affect the long-term stability of the perovskite solar cells(PVSCs).To solve this problem,surface passivation molecules are introduced at selective interface(the interface between perovskite and carrier selective layer).This review summarizes recent progress of small molecules used in PVSCs.Firstly,different types of defect states in perovskite films are introduced and their effects on device performance are discussed.Subsequently,surface passivation molecules are divided into four categories,and the interaction between the functional groups of the surface passivation molecules and selective defect states in perovskite films are highlighted.Finally,we look into the prospects and challenges in design noble small molecules for PVSCs applications.
基金supported by the National Natural Science Foundation of China(22179042,U21A2078,and 51902110)the Natural Science Foundation of Fujian Province(2020J06021 and 2020J01064).
文摘Wide-bandgap(WBG)perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large opencircuit voltage(V_(OC))deficits,limiting their photovoltaic performance.Here,we address these issues by in-situ forming a well-defined 2D perovskite(PMA)_(2)PbCl_(4)(phenmethylammonium is referred to as PMA)passivation layer on top of the WBG active layer.The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent.First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase.The(PMA)_(2)PbCl_(4)forms improved type-I energy level alignment with the WBG perovskite,reducing the electron recombination at the perovskite/hole-transport-layer interface.Applying this strategy in fabricating semi-transparent WBG perovskite solar cells(indium tin oxide as the back electrode),the V_(OC)deficits can be reduced to 0.49 V,comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes.Consequently,we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high V_(OC)of 1.23 V.
基金supported by the National Natural Science Foundation of China(U21A2078)Natural Science Foundation of Fujian Province(2020J06021,2019J01057,and 2020J01064)Scientific Research Funds of Huaqiao University.
文摘Quasi-2D perovskites have attracted tremendous interest for application as lightemission layers in light-emitting diodes(LEDs).However,the heterogeneous n phase and non-uniform distribution still severely limit the further development of quasi-2D perovskite LEDs(Pero-LEDs).Meanwhile,the increased defect density caused by the reduced dimension and grain size induces non-radiative recombination and further deteriorates the device performance.Here,we found that a series of molecules containing phosphoryl chloride functional groups have noticeable enhancement effects on the device performance of quasi-2D Pero-LEDs.Then,we studied the modification mechanism by focusing on the bis(2-oxo-3-oxazolidinyl)phosphinic chloride(BOPCl).It is concluded that the BOPCl can not only regulate the phase distribution by decreasing the crystallization rate but also remain in the grain boundaries and passivate the defects.As a result,the corresponding quasi-2D Pero-LEDs obtained a maximum external quantum efficiency(EQE_(max))of 20.82%and an average EQE(EQE_(ave))of around 20%on the optimal 50 devices,proving excellent reproducibility.Our work provides a new selection of molecular types for regulating the crystallization and passivating the defects of quasi-2D perovskite films.
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB3800101 and 2022YFE0110300)National Natural Science Foundation of China (No. U19A2089, 52261145696, 52073198, 92163114, and 22161142003)+3 种基金Natural Science Foundation of Jiangsu Province (BK20211598)“111” projectthe Young Elite Scientist Sponsorship Program by CASTCollaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University。
文摘All-inorganic CsPbI_3 quantum dots(QDs) have demonstrated promising potential in photovoltaic(PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid(HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI_2 into highly coordinated [PbI_m]~(2-m), enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on ofurther understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金support from the National Natural Science Foundation of China(11764027)the GH Fund B(202202022563),Youth Fund Project of Lanzhou City College(LZCUQN2021-08)+1 种基金Gansu Provincial Key Talent Projects in 2020,Gansu Province Colleges and Universities Industry Support Project(2020C-30)Provincial Key Talent Project in 2020(Mechanical Equipment Green Reconstruction Surface Engineering Innovation Talent Team Construction Project).
文摘This work investigates the effect of passivation on the electronic properties of inorganic perovskite CsPbI_(3)materials by using first-principles calculations with density functional theory(DFT).The passivation effect after the addition of Phenylethylamine(PEA+)molecule to CsPbI_(3)(110)surface is studied.The results of density of states(DOS)calculations show that the CsPbI_(3)(110)surface model with I atom terminated reveals new electronic DOS peaks(surface states)near the Fermi level.These surface states are mainly due to the contribution of I-5p orbital and are harmful to the CsPbI_(3)-based solar cells because they reduce the photoelectric conversion efficiency.The surface states near the Fermi level are significantly reduced,and the decline rate reaches 38.8%with the addition with PEA+molecule to the CsPbI3(110)surface.