This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a n...This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.展开更多
To deal with uncertainties of renewable energy,demand and price signals in real-time microgrid operation,this paper proposes a model predictive control strategy for microgrid economic dispatch, where hourly schedule i...To deal with uncertainties of renewable energy,demand and price signals in real-time microgrid operation,this paper proposes a model predictive control strategy for microgrid economic dispatch, where hourly schedule is constantly optimized according to the current system state and latest forecast information. Moreover, implicit network topology of the microgrid and corresponding power flow constraints are considered, which leads to a mixed integer nonlinear optimal power flow problem. Given the non-convexity feature of the original problem, the technique of conic programming is applied to efficiently crack the nut. Simulation results from a reconstructed IEEE-33 bus system and comparisons with the routine day-ahead microgrid schedule sufficiently substantiate the effectiveness of the proposed MPC strategy and the conic programming method.展开更多
One battery energy storage system(BESS)can be used to provide different services,such as energy arbitrage(EA)and frequency regulation(FR)support,etc.,which have different revenues and lead to different battery degrada...One battery energy storage system(BESS)can be used to provide different services,such as energy arbitrage(EA)and frequency regulation(FR)support,etc.,which have different revenues and lead to different battery degradation profiles.This paper proposes a whole-lifetime coordinated service strategy to maximize the total operation profit of BESS.A multi-stage battery aging model is developed to characterize the battery aging rates during the whole lifetime.Considering the uncertainty of electricity price in EA service and frequency deviation in FR service,the whole problem is formulated as a twostage stochastic programming problem.At the first stage,the optimal service switching scheme between the EA and FR services are formulated to maximize the expected value of the whole-lifetime operation profit.At the second stage,the output power of BESS in EA service is optimized according to the electricity price in the hourly timescale,whereas the output power of BESS in FR service is directly determined according to the frequency deviation in the second timescale.The above optimization problem is then converted as a deterministic mixed-integer nonlinear programming(MINLP)model with bilinear items.Mc Cormick envelopes and a bound tightening algorithm are used to solve it.Numerical simulation is carried out to validate the effectiveness and advantages of the proposed strategy.展开更多
基金supported in part by the European Regional Development Fund under Grant KK.01.1.1.01.0009(DATACROSS).
文摘This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%.
基金supported by the National Natural Science Foundation of China(No.51277170)the National Key Basic Research Program of China(No.2012CB215204)
文摘To deal with uncertainties of renewable energy,demand and price signals in real-time microgrid operation,this paper proposes a model predictive control strategy for microgrid economic dispatch, where hourly schedule is constantly optimized according to the current system state and latest forecast information. Moreover, implicit network topology of the microgrid and corresponding power flow constraints are considered, which leads to a mixed integer nonlinear optimal power flow problem. Given the non-convexity feature of the original problem, the technique of conic programming is applied to efficiently crack the nut. Simulation results from a reconstructed IEEE-33 bus system and comparisons with the routine day-ahead microgrid schedule sufficiently substantiate the effectiveness of the proposed MPC strategy and the conic programming method.
基金partially supported by T-RECs Energy Pte.Ltd.under project(No.04IDS000719N014)。
文摘One battery energy storage system(BESS)can be used to provide different services,such as energy arbitrage(EA)and frequency regulation(FR)support,etc.,which have different revenues and lead to different battery degradation profiles.This paper proposes a whole-lifetime coordinated service strategy to maximize the total operation profit of BESS.A multi-stage battery aging model is developed to characterize the battery aging rates during the whole lifetime.Considering the uncertainty of electricity price in EA service and frequency deviation in FR service,the whole problem is formulated as a twostage stochastic programming problem.At the first stage,the optimal service switching scheme between the EA and FR services are formulated to maximize the expected value of the whole-lifetime operation profit.At the second stage,the output power of BESS in EA service is optimized according to the electricity price in the hourly timescale,whereas the output power of BESS in FR service is directly determined according to the frequency deviation in the second timescale.The above optimization problem is then converted as a deterministic mixed-integer nonlinear programming(MINLP)model with bilinear items.Mc Cormick envelopes and a bound tightening algorithm are used to solve it.Numerical simulation is carried out to validate the effectiveness and advantages of the proposed strategy.