The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calori...The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.展开更多
Two general expressions and their six derived formulae for estimating the critical temperature(Tb) of thermal explosion for energetic materials(EMs) were derived from the Semenov's thermal explosion theory and ei...Two general expressions and their six derived formulae for estimating the critical temperature(Tb) of thermal explosion for energetic materials(EMs) were derived from the Semenov's thermal explosion theory and eight non-isothermal kinetic equations via reasonable hypothesis. We can easily obtain the values of the initial temperature(T0i) at which DSC curve deviates from the baseline of the non-isothermal DSC curve of EMs, the onset temperature(Tei), the exothermic decomposition reaction kinetic parameters and the values of Too and Te0 from the equation Toiorei=Tooore0+α1β1+α2β2+...+αL-2βi^L-2, i=1, 2, …, L and then calculate the values of Tb by means of the six derived formulae. The results obtained with the six derived calculating methods for six trinitromethyl explosives: bis(2,2,2- trinitroethyl-N-nitro) ethylene diamine(BTNEDA), 2,2,2-trinitroethyl-4,4,4-trinitrobutyrate(TNETB), bis(2,2,2- trinitroethyl) formal(BNTF), bis(2,2,2-trinitroethyl-nitramine)(BTNNA), 2,2,2-trinitroethyl-2,2,2-trinitroethyl-N- nitroamino acetate(TNTNNA) and tetrakis [2,2,2-trinitroethyl] orthoester(TTNOE) agree well with each other.展开更多
A method of estimating the critical rate of temperature increase of thermal explosion for the first orderautocatalytic decomposition reaction system using non-isothermal DSC is presented. Information is obtained on th...A method of estimating the critical rate of temperature increase of thermal explosion for the first orderautocatalytic decomposition reaction system using non-isothermal DSC is presented. Information is obtained on theincreasing rate of temperature in nitrocellulose containing 13.54% of nitrogen when the first order autocatalytic decomposition converts into thermal explosion.展开更多
A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained...A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion.展开更多
The non-isothermal crystallization dynamic behavior and mechanism of plasma sprayed Fe_(48)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)coating were thoroughly studied.The phase transition and crystallization kinetics of the coating...The non-isothermal crystallization dynamic behavior and mechanism of plasma sprayed Fe_(48)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)coating were thoroughly studied.The phase transition and crystallization kinetics of the coating were elaborately investigated by differential scanning calorimetry(DSC),X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The findings reveal that the characteristic temperatures of the coating shift to an elevated temperature at a higher heating rate and the crystallization processes are thermally activated.The 3-rd step of crystallization processes is more susceptible to the continuously increased heating rate while the onset crystallization reaction is less sensitive to the continuously enhanced heating rate.Fe_(23)(C,B)_6 phase is inclined to precipitate than other crystal phases due to the substantial pre-generation ofα-Fe.The onset nucleation and growth ofα-Fe crystals is tough due to a higher onset apparent activation energy.Meanwhile,the transformation from Fe_(23)(C,B)_(6)to FeB is harder in comparison with the precipitation of other crystals.The most parts of the three crystallization processes are dominated by three-dimensional diffusion model due to the fact that most values of local Avrami exponent are higher than 2.5.展开更多
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cool...Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.展开更多
In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt...In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.展开更多
A method for estimating the critical temperature of thermal explosion for energetic materials using differential scanning calorimetry (DSC) measurement is derived from the Semenov's thermal explosion theory and th...A method for estimating the critical temperature of thermal explosion for energetic materials using differential scanning calorimetry (DSC) measurement is derived from the Semenov's thermal explosion theory and the non-isothermal kinetic equation based on Harcourt-Esson's kinetic equation.The result obtained from this method coincides completely with that of the Hu-Yang-Liang-Wu method.展开更多
Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation...Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation in different oxidation stages, based on non-isothermal thermogravimetry-differential scanning calorimetry(TG-DSC) and electron paramagnetic resonance(EPR) experiments. We found that the key feature temperatures grow steadily with increasing nitrogen in the oxidation environment,resulting in longer oxidation stages. The most significant finding is that there is a stagnation of the inhibitory effect of nitrogen on coal oxidation in the range of 85.0–95.0% nitrogen in the slow and the rapid oxidation stages, owing to the competitive adsorption of coal by nitrogen and oxygen. However, the restraining effect cannot be reflected by the kinetic parameters of the coal before it reaches the thermal decomposition and combustion stage. Nitrogen can also affect free radical types and free radical concentrations during coal oxidation: the higher the concentration of nitrogen in the oxidation environment, the greater the number of free radical types and the lower the free radical concentration. This experimental study improves the understanding of the restraining effect of nitrogen on coal oxidation in different oxidation stages and provides an important reference for coal fire prevention in spontaneous combustionprone coal seams.展开更多
Three thermal analytical techniques such as differential scanning calorimetry(DSC), thermal gravimetric analysis(TGA) using five heating rates, and DSC-Fourier Transform Infrared(DSCFTIR) microspectroscopy using one h...Three thermal analytical techniques such as differential scanning calorimetry(DSC), thermal gravimetric analysis(TGA) using five heating rates, and DSC-Fourier Transform Infrared(DSCFTIR) microspectroscopy using one heating rate, were used to determine the thermal characteristics and the dehydration process of aspartame(APM) hemihydrate in the solid state.The intramolecular cyclization process of APM anhydrate was also examined. One exothermic and four endothermic peaks were observed in the DSC thermogram of APM hemihydrate,in which the exothermic peak was due to the crystallization of some amorphous APM caused by dehydration process from hemihydrate to anhydride. While four endothermic peaks were corresponded to the evaporation of absorbed water, the dehydration of hemihydrate, the diketopiperazines(DKP) formation via intramolecular cyclization, and the melting of DKP, respectively. The weight loss measured in TGA curve of APM hemihydrate was associated with these endothermic peaks in the DSC thermogram. According to the Flynn–Wall–Ozawa(FWO)model, the activation energy of dehydration process within 100–150 °C was about 218 ± 11 kJ/mol determined by TGA technique. Both the dehydration and DKP formation processes for solid-state APM hemihydrate were markedly evidenced from the thermal-responsive changes in several specific FTIR bands by a single-step DSC-FTIR microspectroscopy.展开更多
Using the advanced algorithm combining parallel computing,adaptive mesh re-griding and multigrid methods,quantitative 3D phase-field simulations of non-isothermal solidification of binary alloy were carried out.The 3D...Using the advanced algorithm combining parallel computing,adaptive mesh re-griding and multigrid methods,quantitative 3D phase-field simulations of non-isothermal solidification of binary alloy were carried out.The 3D phase-field simulation results were compared with the analytical LKT(Lipton,Kurz and Trivedi)theory.For comparison,the simulation and analytical results for 2D cases were also given.The 3D phase-field simulation results support the transport portion of the LKT theory.However,the tip radius and tip velocity predicted by the simulations are not in good agreement with the LKT theory over the whole range of undercooling.The stability parameter calculated from phase-field simulations varies significantly with the Peclet number,indicating that the stability criterion,which assumes that the stability parameter is constant,is invalid.展开更多
The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and...The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted.展开更多
The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP...The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.展开更多
In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusio...In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.展开更多
文摘The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.
基金Supported by the National Natural Science Foundation of China(Nos.20573098, 50846021 and 69075036)
文摘Two general expressions and their six derived formulae for estimating the critical temperature(Tb) of thermal explosion for energetic materials(EMs) were derived from the Semenov's thermal explosion theory and eight non-isothermal kinetic equations via reasonable hypothesis. We can easily obtain the values of the initial temperature(T0i) at which DSC curve deviates from the baseline of the non-isothermal DSC curve of EMs, the onset temperature(Tei), the exothermic decomposition reaction kinetic parameters and the values of Too and Te0 from the equation Toiorei=Tooore0+α1β1+α2β2+...+αL-2βi^L-2, i=1, 2, …, L and then calculate the values of Tb by means of the six derived formulae. The results obtained with the six derived calculating methods for six trinitromethyl explosives: bis(2,2,2- trinitroethyl-N-nitro) ethylene diamine(BTNEDA), 2,2,2-trinitroethyl-4,4,4-trinitrobutyrate(TNETB), bis(2,2,2- trinitroethyl) formal(BNTF), bis(2,2,2-trinitroethyl-nitramine)(BTNNA), 2,2,2-trinitroethyl-2,2,2-trinitroethyl-N- nitroamino acetate(TNTNNA) and tetrakis [2,2,2-trinitroethyl] orthoester(TTNOE) agree well with each other.
文摘A method of estimating the critical rate of temperature increase of thermal explosion for the first orderautocatalytic decomposition reaction system using non-isothermal DSC is presented. Information is obtained on theincreasing rate of temperature in nitrocellulose containing 13.54% of nitrogen when the first order autocatalytic decomposition converts into thermal explosion.
基金Supported by the Science and Technology Foundation of Shaanxi Key L aboratory of Physico- Inorganic Chemistry(No.2 9- 3,2 0 0 1) and the Science and Technology Foundation of Propellant and Explosive Combustion of China(No.5 14 5 5 0 10 1)
文摘A method of estimating the critical rate of temperature rise for the thermal explosion of first order autocatalytic decomposition reaction systems by using non-isothermal DSC is presented. The information was obtained on the increasing rate of temperature for the first order autocatalytic decomposition of nitrocellulose containing 13.86% nitrogen converting into the thermal explosion.
基金Funded by the China Scholarship Council(No.201906710142)。
文摘The non-isothermal crystallization dynamic behavior and mechanism of plasma sprayed Fe_(48)Cr_(15)Mo_(14)C_(15)B_(6)Y_(2)coating were thoroughly studied.The phase transition and crystallization kinetics of the coating were elaborately investigated by differential scanning calorimetry(DSC),X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).The findings reveal that the characteristic temperatures of the coating shift to an elevated temperature at a higher heating rate and the crystallization processes are thermally activated.The 3-rd step of crystallization processes is more susceptible to the continuously increased heating rate while the onset crystallization reaction is less sensitive to the continuously enhanced heating rate.Fe_(23)(C,B)_6 phase is inclined to precipitate than other crystal phases due to the substantial pre-generation ofα-Fe.The onset nucleation and growth ofα-Fe crystals is tough due to a higher onset apparent activation energy.Meanwhile,the transformation from Fe_(23)(C,B)_(6)to FeB is harder in comparison with the precipitation of other crystals.The most parts of the three crystallization processes are dominated by three-dimensional diffusion model due to the fact that most values of local Avrami exponent are higher than 2.5.
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金financially supported by a grant provided by Mitsubishi Heavy Industries。
文摘Polypropylene is commonly used as a binder for ceramic injection molding,and rapid cooling is often encountered during processing.However,the crystallization behavior of polypropylene shows a strong dependence on cooling rate due to its semi-crystalline characteristics.Therefore,the influence of cooling rate on the quality of final product cannot be ignored.In this study,the fast differential scanning calorimetry(FSC)test was performed to study the influence of cooling rate on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics of a copolymer polypropylene(PP BC03B).The results show that the crystallization temperatures and crystallinity decrease as the cooling rate increases.In addition,two exothermic peaks occur when cooling rate ranges from 30 to 300 K·s^(-1),indicating the formation of another crystal phase.Avrami,Ozawa and Mo equations were used to explore the non-isothermal crystallization kinetics,and it can be concluded that the Mo method is suitable for this study.
基金financially supported by the National Natural Science Foundation of China(Nos.51874071 and 52022019)。
文摘In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.
基金the National Natural Science Foundation of China (60975036)
文摘A method for estimating the critical temperature of thermal explosion for energetic materials using differential scanning calorimetry (DSC) measurement is derived from the Semenov's thermal explosion theory and the non-isothermal kinetic equation based on Harcourt-Esson's kinetic equation.The result obtained from this method coincides completely with that of the Hu-Yang-Liang-Wu method.
基金supported by the National Key R&D Program of China (2018YFC0807900)“Double First Rate” Independent Innovation Project of CUMT (2018ZZCX05)
文摘Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation in different oxidation stages, based on non-isothermal thermogravimetry-differential scanning calorimetry(TG-DSC) and electron paramagnetic resonance(EPR) experiments. We found that the key feature temperatures grow steadily with increasing nitrogen in the oxidation environment,resulting in longer oxidation stages. The most significant finding is that there is a stagnation of the inhibitory effect of nitrogen on coal oxidation in the range of 85.0–95.0% nitrogen in the slow and the rapid oxidation stages, owing to the competitive adsorption of coal by nitrogen and oxygen. However, the restraining effect cannot be reflected by the kinetic parameters of the coal before it reaches the thermal decomposition and combustion stage. Nitrogen can also affect free radical types and free radical concentrations during coal oxidation: the higher the concentration of nitrogen in the oxidation environment, the greater the number of free radical types and the lower the free radical concentration. This experimental study improves the understanding of the restraining effect of nitrogen on coal oxidation in different oxidation stages and provides an important reference for coal fire prevention in spontaneous combustionprone coal seams.
文摘Three thermal analytical techniques such as differential scanning calorimetry(DSC), thermal gravimetric analysis(TGA) using five heating rates, and DSC-Fourier Transform Infrared(DSCFTIR) microspectroscopy using one heating rate, were used to determine the thermal characteristics and the dehydration process of aspartame(APM) hemihydrate in the solid state.The intramolecular cyclization process of APM anhydrate was also examined. One exothermic and four endothermic peaks were observed in the DSC thermogram of APM hemihydrate,in which the exothermic peak was due to the crystallization of some amorphous APM caused by dehydration process from hemihydrate to anhydride. While four endothermic peaks were corresponded to the evaporation of absorbed water, the dehydration of hemihydrate, the diketopiperazines(DKP) formation via intramolecular cyclization, and the melting of DKP, respectively. The weight loss measured in TGA curve of APM hemihydrate was associated with these endothermic peaks in the DSC thermogram. According to the Flynn–Wall–Ozawa(FWO)model, the activation energy of dehydration process within 100–150 °C was about 218 ± 11 kJ/mol determined by TGA technique. Both the dehydration and DKP formation processes for solid-state APM hemihydrate were markedly evidenced from the thermal-responsive changes in several specific FTIR bands by a single-step DSC-FTIR microspectroscopy.
文摘Using the advanced algorithm combining parallel computing,adaptive mesh re-griding and multigrid methods,quantitative 3D phase-field simulations of non-isothermal solidification of binary alloy were carried out.The 3D phase-field simulation results were compared with the analytical LKT(Lipton,Kurz and Trivedi)theory.For comparison,the simulation and analytical results for 2D cases were also given.The 3D phase-field simulation results support the transport portion of the LKT theory.However,the tip radius and tip velocity predicted by the simulations are not in good agreement with the LKT theory over the whole range of undercooling.The stability parameter calculated from phase-field simulations varies significantly with the Peclet number,indicating that the stability criterion,which assumes that the stability parameter is constant,is invalid.
文摘The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted.
基金Project(2012CB619505)supported by the National Basic Research Program of China
文摘The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.
基金Project(2011CB606306) supported by the National Basic Research Program of ChinaProject(51101014) supported by the National Natural Science Foundation of China
文摘In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.