Weizhou Island,located in Beihai,Guangxi Province,is recognized as the largest paleovolcanic island in China,characterized by its relatively young geological age.The development of island tourism has progressively est...Weizhou Island,located in Beihai,Guangxi Province,is recognized as the largest paleovolcanic island in China,characterized by its relatively young geological age.The development of island tourism has progressively established it as a significant tourist attraction within Beihai,transforming the area into a prominent leisure and tourism resort.As tourism on Weizhou Island continues to develop both in scope and in depth,it has increasingly influenced the sense of gain among the local community residents.Currently,in alignment with the strategic objective of achieving common prosperity,it is crucial to comprehend and enhance the sense of gain experienced by residents in island tourism destinations,as this is vital for the achievement of this overarching goal.Taking the residents of Weizhou Island in Beihai as the subjects,this paper constructs their sense of gain related to tourism,employing grounded theory.It posits that the residents’sense of gain comprises four primary dimensions:sense of economic gain,sense of social gain,sense of cultural gain,and sense of environmental gain.Additionally,the paper examines the factors that influence these dimensions.Based on this foundation,effective strategies are proposed to enhance the sense of gain among community residents in island tourism destinations,thereby promoting the sustainable development of island tourism.展开更多
Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has seve...Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.展开更多
Objectives:This study was conducted to determine the effect of multidisciplinary nursing intervention(MNI)on interdialytic weight gain(IDWG)and quality of life(QoL)among chronic hemodialysis patients.Materials and Met...Objectives:This study was conducted to determine the effect of multidisciplinary nursing intervention(MNI)on interdialytic weight gain(IDWG)and quality of life(QoL)among chronic hemodialysis patients.Materials and Methods:Quantitative research approach with randomized-controlled,single-blind trial was conducted among 120 chronic hemodialysis patients in Institute of Medical Sciences and SUM Hospital Bhubaneswar,Odisha,India from February 2023 to February 2024.Participants were randomly assigned into the experimental group(n1=65)and control group(n2=55)by block randomization methods.The experimental group received the intervention phase up to the 6th week,along with the usual treatment,and the control group received only standard treatment up to the end of the study.After that,they received the diet chart plan and fluid distribution timetable.Results:Significant improvements were found in IDWG and QoL for the experimental group.The experimental group exhibited a sharp decline in weight gain within the group(F=20.05,P<0.001)between the group(F=13.02,P<0.001),interaction effects between the groups across the time point(F=5.67,P<0.005).Kidney disease QoL scores(KDQOL^(™)36)increased from 49.38±9.56 to 58.63±6.04 in the experimental group,compared to an increase from 50.84±9.25 to 52.04±8.02 in the control group.Conclusion:This trial showed that MNIs significantly reduced IDWG and improved KDQOL^(™)36 scores,with the experimental group outperforming the control,highlighting the intervention’s effectiveness.展开更多
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist...The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.展开更多
Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fer...Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.展开更多
开展脉冲重复间隔(Pulse Repetition Interval,PRI)模式识别工作是电子支援系统的一项重要任务。现代复杂电磁环境下,受雷达辐射源部署和接收设备本身影响,雷达脉冲丢失率极高,导致分选后PRI序列调制规律被破坏,现有的PRI模式识别方法...开展脉冲重复间隔(Pulse Repetition Interval,PRI)模式识别工作是电子支援系统的一项重要任务。现代复杂电磁环境下,受雷达辐射源部署和接收设备本身影响,雷达脉冲丢失率极高,导致分选后PRI序列调制规律被破坏,现有的PRI模式识别方法准确率不足。针对上述问题,从PRI序列还原角度出发,并结合PRI序列本质是时序序列的特点,提出GAIN-LSTM(Generative Adversarial Imputation Nets and Long Short Term Memory)网络架构,其先对丢失脉冲位置进行补全操作,恢复PRI调制规律,然后对还原后PRI序列进行调制模式识别。仿真结果表明,提出的GAIN-LSTM网络架构在脉冲丢失率70%时仍保持95%的正确识别率。展开更多
The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm t...The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above.展开更多
We investigate the higher-order topological laser in the two-dimensional(2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degen...We investigate the higher-order topological laser in the two-dimensional(2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degenerate topological corner modes, which are protected by bulk band gap. For such a non-Hermitian model, by adjusting the parameters of the system and introducing the pumping into the cavity at the corner, a single-mode lasing with topological protection emerges.Furthermore, single-mode lasing exists over a wide range of pumping strengths. No matter where the cavity is initially stimulated, after enough time evolution, all the cavities belonging to the topological corner mode can emit a stable laser.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhan...This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.展开更多
The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-u...The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-user communication and target sensing.The primary objective is to maximize the sum rate of multi-user communication,while also ensuring sufficient beampattern gain at particular angles that are of interest for sensing,all within the constraints of the transmit power budget.To tackle this complex non-convex problem,an effective algorithm that iteratively optimizes the joint beamformers is developed.This algorithm leverages the techniques of fractional programming and semidefinite relaxation to achieve its goals.The numerical results confirm the effectiveness of the proposed algorithm.展开更多
Objective:To investigate the effects of maternal body mass index(BMI)and gestational weight gain on maternal and neonatal outcomes in twin pregnancies.Methods:Five hundred cases of twin pregnancies were divided into a...Objective:To investigate the effects of maternal body mass index(BMI)and gestational weight gain on maternal and neonatal outcomes in twin pregnancies.Methods:Five hundred cases of twin pregnancies were divided into a low body weight group(68 cases),a normal weight group(355 cases),an overweight group(65 cases),and an obesity group(12 cases)according to the World Health Organization(WHO)Body Mass Index(BMI)classification guidelines Results:Comparison of weight gain during different pregnancies revealed that pregnant women were mainly of low weight and average weight.The higher the BMI before pregnancy,the higher the incidence of excessive weight gain during pregnancy.The incidences of gestational diabetes mellitus(GDM)and premature rupture of membranes in women with low weight gain were significantly higher than those in women with average weight gain and high weight gain(P<0.05).The incidences of gestational hypertension,preeclampsia,and anemia in women with high weight gain were significantly higher than those in women with low weight gain and average weight gain(P<0.05).The incidence of neonatal birth weight,fetal distress,and macrosomia in the high weight gain group was significantly higher than those in the low weight gain and average weight gain groups(P<0.05).The birth weight of newborns in low-weight gain mothers was significantly lower than that of normal-weight gain mothers(P<0.05).Conclusion:Poor maternal and infant outcomes were common in women with insufficient or excessive weight gain during pregnancy.Therefore,for women with twin pregnancies,weight management is crucial to ensure maternal and infant health.展开更多
Considering the adsorption loss of the hydraulic fracturing assisted oil displacement(HFAD)agent in the matrix,a method is proposed to characterize the dynamic saturation adsorption capacity of the HFAD agent with pre...Considering the adsorption loss of the hydraulic fracturing assisted oil displacement(HFAD)agent in the matrix,a method is proposed to characterize the dynamic saturation adsorption capacity of the HFAD agent with pressure differential and permeability.Coupled with the viscosity-concentration relationship of the HFAD agent,a non-linear seepage model of HFAD was established,taking into account the adsorption effect of high pressure drops,and the influencing factors were analyzed.The findings indicate that the replenishment of formation energy associated with HFAD technology is predominantly influenced by matrix permeability,fracture length and the initial concentration of the HFAD agent.The effect of replenishment of formation energy is positively correlated with matrix permeability and fracture length,and negatively correlated with the initial concentration of the HFAD agent.The initial concentration and injection amount of the high-pressure HFAD agent can enhance the concentration of the HFAD agent in the matrix and improve the efficiency of oil washing.However,a longer fracture is not conducive to maintaining the high concentration of the HFAD agent in the matrix.Furthermore,the fracture length and pump displacement are the direct factors affecting the fluid flow velocity in the matrix subsequent to HFAD.These factors can be utilized to control the location of the displacement phase front,and thus affect the swept area of HFAD.A reasonable selection of the aforementioned parameters can effectively supplement the formation energy,expand the swept volume of the HFAD agent,improve the recovery efficiency of HFAD,and reduce the development cost.展开更多
基金Sponsored by the Guangxi Philosophy and Social Sciences Research Annual Project(2024GLF036)Thousands of Young and Middle-aged Backbone Teachers Cultivation Program for Universities and Colleges in Guangxi(2021QGRW061).
文摘Weizhou Island,located in Beihai,Guangxi Province,is recognized as the largest paleovolcanic island in China,characterized by its relatively young geological age.The development of island tourism has progressively established it as a significant tourist attraction within Beihai,transforming the area into a prominent leisure and tourism resort.As tourism on Weizhou Island continues to develop both in scope and in depth,it has increasingly influenced the sense of gain among the local community residents.Currently,in alignment with the strategic objective of achieving common prosperity,it is crucial to comprehend and enhance the sense of gain experienced by residents in island tourism destinations,as this is vital for the achievement of this overarching goal.Taking the residents of Weizhou Island in Beihai as the subjects,this paper constructs their sense of gain related to tourism,employing grounded theory.It posits that the residents’sense of gain comprises four primary dimensions:sense of economic gain,sense of social gain,sense of cultural gain,and sense of environmental gain.Additionally,the paper examines the factors that influence these dimensions.Based on this foundation,effective strategies are proposed to enhance the sense of gain among community residents in island tourism destinations,thereby promoting the sustainable development of island tourism.
基金Fundamental Research Funds for the Central Universities(YWF-23-L-1225)National Natural Science Foundation of China(62201025)Chinese Aeronautical Establishment(2022Z037051001)。
文摘Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.
基金correspondence:Prof.Rashmimala PRADHAN,Department of Medical Surgical Nursing,SUM Nursing College,Faculty of Nursing,Siksha‘O’Anusandhan(Deemed to be University),Bhubaneswar,Odisha,India.E-mail:rashmimalapradhan@soa.ac.in。
文摘Objectives:This study was conducted to determine the effect of multidisciplinary nursing intervention(MNI)on interdialytic weight gain(IDWG)and quality of life(QoL)among chronic hemodialysis patients.Materials and Methods:Quantitative research approach with randomized-controlled,single-blind trial was conducted among 120 chronic hemodialysis patients in Institute of Medical Sciences and SUM Hospital Bhubaneswar,Odisha,India from February 2023 to February 2024.Participants were randomly assigned into the experimental group(n1=65)and control group(n2=55)by block randomization methods.The experimental group received the intervention phase up to the 6th week,along with the usual treatment,and the control group received only standard treatment up to the end of the study.After that,they received the diet chart plan and fluid distribution timetable.Results:Significant improvements were found in IDWG and QoL for the experimental group.The experimental group exhibited a sharp decline in weight gain within the group(F=20.05,P<0.001)between the group(F=13.02,P<0.001),interaction effects between the groups across the time point(F=5.67,P<0.005).Kidney disease QoL scores(KDQOL^(™)36)increased from 49.38±9.56 to 58.63±6.04 in the experimental group,compared to an increase from 50.84±9.25 to 52.04±8.02 in the control group.Conclusion:This trial showed that MNIs significantly reduced IDWG and improved KDQOL^(™)36 scores,with the experimental group outperforming the control,highlighting the intervention’s effectiveness.
基金This research was financially supported by the Natural Science Basic Research Program of Shaanxi,China(2022JM-126)the National Natural Science Foundation of China(52079132).
文摘The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.
基金funded by National Key R&D Program of China(2022YFA1304204)Agricultural Science and Technology Innovation Program(CAAS-ASTIP-2017-FRI-04)Beijing Innovation Consortium of livestock Research System(BAIC05-2023)。
文摘Background Rumen bacterial groups can affect growth performance,such as average daily gain(ADG),feed intake,and efficiency.The study aimed to investigate the inter-relationship of rumen bacterial composition,rumen fermentation indicators,serum indicators,and growth performance of Holstein heifer calves with different ADG.Twelve calves were chosen from a trail with 60 calves and divided into higher ADG(HADG,high pre-and post-weaning ADG,n=6)and lower ADG(LADG,low pre-and post-weaning ADG,n=6)groups to investigate differences in bacterial composition and functions and host phenotype.Results During the preweaning period,the relative abundances of propionate producers,including g_norank_f_Butyricicoccaceae,g_Pyramidobacter,and g_norank_f_norank_o_Clostridia_vadin BB60_group,were higher in HADG calves(LDA>2,P<0.05).Enrichment of these bacteria resulted in increased levels of propionate,a gluconeogenic precursor,in preweaning HADG calves(adjusted P<0.05),which consequently raised serum glucose concentrations(adjusted P<0.05).In contrast,the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect.Moreover,no significant differences were observed in rumen fermentation parameters and serum indices between the two groups.Conclusions The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.
文摘开展脉冲重复间隔(Pulse Repetition Interval,PRI)模式识别工作是电子支援系统的一项重要任务。现代复杂电磁环境下,受雷达辐射源部署和接收设备本身影响,雷达脉冲丢失率极高,导致分选后PRI序列调制规律被破坏,现有的PRI模式识别方法准确率不足。针对上述问题,从PRI序列还原角度出发,并结合PRI序列本质是时序序列的特点,提出GAIN-LSTM(Generative Adversarial Imputation Nets and Long Short Term Memory)网络架构,其先对丢失脉冲位置进行补全操作,恢复PRI调制规律,然后对还原后PRI序列进行调制模式识别。仿真结果表明,提出的GAIN-LSTM网络架构在脉冲丢失率70%时仍保持95%的正确识别率。
基金partial financial support from Gazpromneft Science and Technology Center。
文摘The aim of this study is to create a fast and stable iterative technique for numerical solution of a quasi-linear elliptic pressure equation. We developed a modified version of the Anderson acceleration(AA)algorithm to fixed-point(FP) iteration method. It computes the approximation to the solutions at each iteration based on the history of vectors in extended space, which includes the vector of unknowns, the discrete form of the operator, and the equation's right-hand side. Several constraints are applied to AA algorithm, including a limitation of the time step variation during the iteration process, which allows switching to the base FP iterations to maintain convergence. Compared to the base FP algorithm, the improved version of the AA algorithm enables a reliable and rapid convergence of the iterative solution for the quasi-linear elliptic pressure equation describing the flow of particle-laden yield-stress fluids in a narrow channel during hydraulic fracturing, a key technology for stimulating hydrocarbon-bearing reservoirs. In particular, the proposed AA algorithm allows for faster computations and resolution of unyielding zones in hydraulic fractures that cannot be calculated using the FP algorithm. The quasi-linear elliptic pressure equation under consideration describes various physical processes, such as the displacement of fluids with viscoplastic rheology in a narrow cylindrical annulus during well cementing,the displacement of cross-linked gel in a proppant pack filling hydraulic fractures during the early stage of well production(fracture flowback), and multiphase filtration in a rock formation. We estimate computational complexity of the developed algorithm as compared to Jacobian-based algorithms and show that the performance of the former one is higher in modelling of flows of viscoplastic fluids. We believe that the developed algorithm is a useful numerical tool that can be implemented in commercial simulators to obtain fast and converged solutions to the non-linear problems described above.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12274326 and 12174288)the National Key R&D Program of China (Grant No. 2021YFA1400602)。
文摘We investigate the higher-order topological laser in the two-dimensional(2D) coupled-cavity array. By adding staggered on-site gain and loss to the 2D Hermitian array with a trivial phase, the system will emerge degenerate topological corner modes, which are protected by bulk band gap. For such a non-Hermitian model, by adjusting the parameters of the system and introducing the pumping into the cavity at the corner, a single-mode lasing with topological protection emerges.Furthermore, single-mode lasing exists over a wide range of pumping strengths. No matter where the cavity is initially stimulated, after enough time evolution, all the cavities belonging to the topological corner mode can emit a stable laser.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
文摘This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.
基金supported in part by the National Natural Science Foundation of China under Grant No.62201266in part by the Natural Science Foundation of Jiangsu Province under Grant No.BK20210335.
文摘The joint beamforming design challenge for dual-functional radar-communication systems is addressed in this paper.The base station in these systems is tasked with simultaneously sending shared signals for both multi-user communication and target sensing.The primary objective is to maximize the sum rate of multi-user communication,while also ensuring sufficient beampattern gain at particular angles that are of interest for sensing,all within the constraints of the transmit power budget.To tackle this complex non-convex problem,an effective algorithm that iteratively optimizes the joint beamformers is developed.This algorithm leverages the techniques of fractional programming and semidefinite relaxation to achieve its goals.The numerical results confirm the effectiveness of the proposed algorithm.
文摘Objective:To investigate the effects of maternal body mass index(BMI)and gestational weight gain on maternal and neonatal outcomes in twin pregnancies.Methods:Five hundred cases of twin pregnancies were divided into a low body weight group(68 cases),a normal weight group(355 cases),an overweight group(65 cases),and an obesity group(12 cases)according to the World Health Organization(WHO)Body Mass Index(BMI)classification guidelines Results:Comparison of weight gain during different pregnancies revealed that pregnant women were mainly of low weight and average weight.The higher the BMI before pregnancy,the higher the incidence of excessive weight gain during pregnancy.The incidences of gestational diabetes mellitus(GDM)and premature rupture of membranes in women with low weight gain were significantly higher than those in women with average weight gain and high weight gain(P<0.05).The incidences of gestational hypertension,preeclampsia,and anemia in women with high weight gain were significantly higher than those in women with low weight gain and average weight gain(P<0.05).The incidence of neonatal birth weight,fetal distress,and macrosomia in the high weight gain group was significantly higher than those in the low weight gain and average weight gain groups(P<0.05).The birth weight of newborns in low-weight gain mothers was significantly lower than that of normal-weight gain mothers(P<0.05).Conclusion:Poor maternal and infant outcomes were common in women with insufficient or excessive weight gain during pregnancy.Therefore,for women with twin pregnancies,weight management is crucial to ensure maternal and infant health.
基金Supported by the National Nature Science Foundation of China(52374035,52074087)Postdoctoral Natural Science Foundation of China(2021M690528)。
文摘Considering the adsorption loss of the hydraulic fracturing assisted oil displacement(HFAD)agent in the matrix,a method is proposed to characterize the dynamic saturation adsorption capacity of the HFAD agent with pressure differential and permeability.Coupled with the viscosity-concentration relationship of the HFAD agent,a non-linear seepage model of HFAD was established,taking into account the adsorption effect of high pressure drops,and the influencing factors were analyzed.The findings indicate that the replenishment of formation energy associated with HFAD technology is predominantly influenced by matrix permeability,fracture length and the initial concentration of the HFAD agent.The effect of replenishment of formation energy is positively correlated with matrix permeability and fracture length,and negatively correlated with the initial concentration of the HFAD agent.The initial concentration and injection amount of the high-pressure HFAD agent can enhance the concentration of the HFAD agent in the matrix and improve the efficiency of oil washing.However,a longer fracture is not conducive to maintaining the high concentration of the HFAD agent in the matrix.Furthermore,the fracture length and pump displacement are the direct factors affecting the fluid flow velocity in the matrix subsequent to HFAD.These factors can be utilized to control the location of the displacement phase front,and thus affect the swept area of HFAD.A reasonable selection of the aforementioned parameters can effectively supplement the formation energy,expand the swept volume of the HFAD agent,improve the recovery efficiency of HFAD,and reduce the development cost.