Let M be a C^(2)-smooth Riemannian manifold with boundary and X be a metric space with non-positive curvature in the sense of Alexandrov.Let u:M→X be a Sobolev mapping in the sense of Korevaar and Schoen.In this shor...Let M be a C^(2)-smooth Riemannian manifold with boundary and X be a metric space with non-positive curvature in the sense of Alexandrov.Let u:M→X be a Sobolev mapping in the sense of Korevaar and Schoen.In this short note,we introduce a notion of p-energy for u which is slightly different from the original definition of Korevaar and Schoen.We show that each minimizing p-harmonic mapping(p≥2)associated to our notion of p-energy is locally Holder continuous whenever its image lies in a compact subset of X.展开更多
We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigid...We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigidity theorem of harmonic maps due to Schoen and Yau (Topology, 18, 1979, 361-380). As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of CP2×V, where V is a closed smooth manifold admitting a real analytic Riemannian metric of non-positive curvature. In addition, by the Albanese map, we obtain the sharp estimate of the degree of symmetry of a compact smooth manifold with some restrictions on its one dimensional cohomology.展开更多
基金supported by the Qilu funding of Shandong University (62550089963197)financially supported by the National Natural Science Foundation of China (11701045)the Yangtze Youth Fund (2016cqn56)
文摘Let M be a C^(2)-smooth Riemannian manifold with boundary and X be a metric space with non-positive curvature in the sense of Alexandrov.Let u:M→X be a Sobolev mapping in the sense of Korevaar and Schoen.In this short note,we introduce a notion of p-energy for u which is slightly different from the original definition of Korevaar and Schoen.We show that each minimizing p-harmonic mapping(p≥2)associated to our notion of p-energy is locally Holder continuous whenever its image lies in a compact subset of X.
基金Project supported by the Japanese Government Scholarshipthe Japan Society for the Promotion of Science Postdoctoral Fellowship for Foreign Researchers+2 种基金the Focused Research Group Postdoctoral Fellowshipthe Program of Visiting Scholars at Chern Institute of Mathematicsthe National Natural Science Foundation of China (No. 10601053).
文摘We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigidity theorem of harmonic maps due to Schoen and Yau (Topology, 18, 1979, 361-380). As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of CP2×V, where V is a closed smooth manifold admitting a real analytic Riemannian metric of non-positive curvature. In addition, by the Albanese map, we obtain the sharp estimate of the degree of symmetry of a compact smooth manifold with some restrictions on its one dimensional cohomology.