In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how...In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.展开更多
The nonparaxial propagation of radially polarized chirped Airy beams(RPCAiBs) in uniaxial crystal orthogonal to the optical axis is analytically studied. The effects of the first and the second order chirp factors, an...The nonparaxial propagation of radially polarized chirped Airy beams(RPCAiBs) in uniaxial crystal orthogonal to the optical axis is analytically studied. The effects of the first and the second order chirp factors, and the ratio of the extraordinary refractive index to the ordinary refractive index on the nonparaxial evolution of RPCAi Bs in different observation planes are investigated in detail. The results show that when one parameter changes, different components behave differently, and even the same component has various behavior in different directions. The initial slope of RPCAi Bs in the x-direction varies more with the first order chirp factor than that in the y-direction. Meanwhile, with the second order chirp factor becoming larger, the depth of the focus of the y-component in the x-direction decreases while that in the y-direction has no difference. In addition, the different ratios of the extraordinary refractive index to the ordinary refractive index change the difference of the depth of the focus between the x-and the y-components.展开更多
This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation pro...This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation properties of PFG beams and to compare nonparaxial results with paraxial ones. It is found that the f parameter, offsetting distance of the knife edge and truncation parameter affect the nonparaxial beam propagation properties. Only under certain conditions the paraxial approximation is applicable. The results are illustrated by numerical examples.展开更多
Analytical expressions for the three components of the nonparaxial propagation of a Hermite-Laguerre-Gaussian (HLG) beam in uniaxial crystal orthogonal to the optical axis are derived. The intensity distribution of ...Analytical expressions for the three components of the nonparaxial propagation of a Hermite-Laguerre-Gaussian (HLG) beam in uniaxial crystal orthogonal to the optical axis are derived. The intensity distribution of an HLG beam and its three components propagating in a uniaxial crystal orthogonal to the optical axis are demonstrated by numerical examples. Although the y and z components of an HLG beam in the incident plane are both equal to zero, they emerge upon propagation inside the uniaxial crystal. Moreover, the beam profile of the x component is relatively stable and the beam profiles of the y and z components have the same evolution law. If the ratio of the extraordinary refractive index to the ordinary refractive index is larger than unity, the beam profile of the HLG beam is elongated in the x direction and generally rotates clockwise. Otherwise, the beam profile of the HLG beam is elongated in the y direction and generally rotates anticlockwise. This research is beneficial to the optical trapping and nonlinear optics involved in the rotation of a beam profile.展开更多
Based on the vectorial Rayleigh-Sommerfeld integral formulae, this paper derives the analytical nonparaxial propagation equation of a super-Lorentz-Gauss (SLG) SLGo1 mode beam in free space. The far field expression...Based on the vectorial Rayleigh-Sommerfeld integral formulae, this paper derives the analytical nonparaxial propagation equation of a super-Lorentz-Gauss (SLG) SLGo1 mode beam in free space. The far field expression and the scalar paraxial result are treated with special cases of the general formulae. According to the obtained analytical representation, the nonparaxial propagation properties of the SLG01 mode beam are illustrated and analysed with numerical examples. This research provides an approach to investigate the propagation of the SLG01 mode beam within the framework of the nonparaxial regime.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)
文摘In this article, we investigate the nonparaxial propagation properties of the chirped Airy Gaussian vortex(CAiGV)beams in uniaxial crystals orthogonal to the optical axis analytically and numerically. We discuss how the linear chirp parameters, the quadratic chirp parameters, and the Gaussian factors influence the nonparaxial propagation dynamics of the CAiGV beams. The intensity, the energy flow, the beam center, and the angular momentum of the CAiGV beams are deeply investigated. It is shown that the Gaussian factors have a great effect on the intensity and the centroid positions of the CAiGV beams. With the Gaussian factors increasing, the intensity of CAiGV beams decreases rapidly. The main lobes of the transverse intensity distribution of the CAiGV beams are similar to triangles.
基金Projected supported by the National Natural Science Foundation of China(Grant Nos.11775083 and 11374108)the Science and Technology Program of Guangzhou Province,China(Grant No.2019050001)the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation,China(Grant No.pdjh2020a0149)。
文摘The nonparaxial propagation of radially polarized chirped Airy beams(RPCAiBs) in uniaxial crystal orthogonal to the optical axis is analytically studied. The effects of the first and the second order chirp factors, and the ratio of the extraordinary refractive index to the ordinary refractive index on the nonparaxial evolution of RPCAi Bs in different observation planes are investigated in detail. The results show that when one parameter changes, different components behave differently, and even the same component has various behavior in different directions. The initial slope of RPCAi Bs in the x-direction varies more with the first order chirp factor than that in the y-direction. Meanwhile, with the second order chirp factor becoming larger, the depth of the focus of the y-component in the x-direction decreases while that in the y-direction has no difference. In addition, the different ratios of the extraordinary refractive index to the ordinary refractive index change the difference of the depth of the focus between the x-and the y-components.
基金Project supported by the National Natural Science Foundation of China(Grant No10574097)
文摘This paper derives the closed-form expressions for nonparaxial phase flipped Gaussian (PFG) beams propagating in free space, through a knife edge and an aperture, which enable us to study nonparaxial propagation properties of PFG beams and to compare nonparaxial results with paraxial ones. It is found that the f parameter, offsetting distance of the knife edge and truncation parameter affect the nonparaxial beam propagation properties. Only under certain conditions the paraxial approximation is applicable. The results are illustrated by numerical examples.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974179 and 61178016)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y1090073)the Key Project of the Education Commission of Zhejiang Province,China (Grant No. Z201120128)
文摘Analytical expressions for the three components of the nonparaxial propagation of a Hermite-Laguerre-Gaussian (HLG) beam in uniaxial crystal orthogonal to the optical axis are derived. The intensity distribution of an HLG beam and its three components propagating in a uniaxial crystal orthogonal to the optical axis are demonstrated by numerical examples. Although the y and z components of an HLG beam in the incident plane are both equal to zero, they emerge upon propagation inside the uniaxial crystal. Moreover, the beam profile of the x component is relatively stable and the beam profiles of the y and z components have the same evolution law. If the ratio of the extraordinary refractive index to the ordinary refractive index is larger than unity, the beam profile of the HLG beam is elongated in the x direction and generally rotates clockwise. Otherwise, the beam profile of the HLG beam is elongated in the y direction and generally rotates anticlockwise. This research is beneficial to the optical trapping and nonlinear optics involved in the rotation of a beam profile.
基金Project supported by the National Natural Science Foundation of China (Grant No.10974179)the Natural Science Foundation of Zhejiang Province of China (Grant No.Y1090073)
文摘Based on the vectorial Rayleigh-Sommerfeld integral formulae, this paper derives the analytical nonparaxial propagation equation of a super-Lorentz-Gauss (SLG) SLGo1 mode beam in free space. The far field expression and the scalar paraxial result are treated with special cases of the general formulae. According to the obtained analytical representation, the nonparaxial propagation properties of the SLG01 mode beam are illustrated and analysed with numerical examples. This research provides an approach to investigate the propagation of the SLG01 mode beam within the framework of the nonparaxial regime.