The purpose of this article is to introduce a class of total quasi-Ф- asymptotically nonexpansive nonself mappings. Strong convergence theorems for common fixed points of a countable family of total quasi-Ф-asymptot...The purpose of this article is to introduce a class of total quasi-Ф- asymptotically nonexpansive nonself mappings. Strong convergence theorems for common fixed points of a countable family of total quasi-Ф-asymptotically nonexpan- sive mappings are established in the framework of Banach spaces based on modified Halpern and Mann-type iteration algorithm. The main results presented in this article extend and improve the corresponding results of many authors.展开更多
Let E be a real uniformly convex and smooth Banach space, and K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonex...Let E be a real uniformly convex and smooth Banach space, and K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonexpansive mappings with respect to P with a sequence {kn^(i)} [1, ∞) (i = 1, 2), and F := F(T1)∩ F(T2) ≠ 0. An iterative sequence for approximation common fixed points of the two nonself asymptotically nonexpansive mappings is discussed. If E has also a Frechet differentiable norm or its dual E^* has Kadec-Klee property, then weak convergence theorems are obtained.展开更多
In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation m...In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].展开更多
Exactly how the immune system discriminates between all environmental antigens to which it reacts vs. all selfantigens to which it does not, is a principal unanswered question in immunology. As set forth in this revie...Exactly how the immune system discriminates between all environmental antigens to which it reacts vs. all selfantigens to which it does not, is a principal unanswered question in immunology. As set forth in this review, because of the advances in our understanding of the immune system that have occurred in the last 50 years, for the first time it is possible to formulate a new theory, termed the "Quantal Theory of Immunity", which reduces the problem from the immune system as a whole, to the individual cells comprising the system, and finally to a molecular explanation as to how the system behaves as it does.展开更多
基金Scientific Research Fund(2011JYZ010)of Science Technology Department of Sichuan ProvinceScientific Research Fund(11ZA172 and 12ZB345)of Sichuan Provincial Education Department
文摘The purpose of this article is to introduce a class of total quasi-Ф- asymptotically nonexpansive nonself mappings. Strong convergence theorems for common fixed points of a countable family of total quasi-Ф-asymptotically nonexpan- sive mappings are established in the framework of Banach spaces based on modified Halpern and Mann-type iteration algorithm. The main results presented in this article extend and improve the corresponding results of many authors.
文摘Let E be a real uniformly convex and smooth Banach space, and K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonexpansive mappings with respect to P with a sequence {kn^(i)} [1, ∞) (i = 1, 2), and F := F(T1)∩ F(T2) ≠ 0. An iterative sequence for approximation common fixed points of the two nonself asymptotically nonexpansive mappings is discussed. If E has also a Frechet differentiable norm or its dual E^* has Kadec-Klee property, then weak convergence theorems are obtained.
文摘In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].
文摘Exactly how the immune system discriminates between all environmental antigens to which it reacts vs. all selfantigens to which it does not, is a principal unanswered question in immunology. As set forth in this review, because of the advances in our understanding of the immune system that have occurred in the last 50 years, for the first time it is possible to formulate a new theory, termed the "Quantal Theory of Immunity", which reduces the problem from the immune system as a whole, to the individual cells comprising the system, and finally to a molecular explanation as to how the system behaves as it does.