Based on the stability criteria of workpiece-fixture system, quantitative optimization of clamping forces during precise machining process for thin walled part is studied considering the contact condition between wokp...Based on the stability criteria of workpiece-fixture system, quantitative optimization of clamping forces during precise machining process for thin walled part is studied considering the contact condition between wokpiece and locator, the contact mechanical model is achieved, which is further been used to calculate the entire passive forces acting on the statically undetermined workpiece by means of the force screw theory as well as minimum norm force principle. Furthermore, a new methodology to optimize clamping forces is put forward, on the criteria of keeping the stability of workpiece during cutting process. By this way, the intensity of clamping forces is decreased dramatically, which will be most beneficial for improving the machining quality of thin-walled parts. Finally, a case study is used to support and validate the proposed model.展开更多
itherto, a precision Concept for curve fitting problems has not been set. By using the theory of functional analysis, the author of this paper established a space theory basis for curve fitting problems. Also given in...itherto, a precision Concept for curve fitting problems has not been set. By using the theory of functional analysis, the author of this paper established a space theory basis for curve fitting problems. Also given in the paper is the precision concept of the curve fitting problems and the method for constructing the fitting of a curve satisfying given precision requirements.展开更多
基金Beijing Municipal Commission of Education Project(XK100070530)
文摘Based on the stability criteria of workpiece-fixture system, quantitative optimization of clamping forces during precise machining process for thin walled part is studied considering the contact condition between wokpiece and locator, the contact mechanical model is achieved, which is further been used to calculate the entire passive forces acting on the statically undetermined workpiece by means of the force screw theory as well as minimum norm force principle. Furthermore, a new methodology to optimize clamping forces is put forward, on the criteria of keeping the stability of workpiece during cutting process. By this way, the intensity of clamping forces is decreased dramatically, which will be most beneficial for improving the machining quality of thin-walled parts. Finally, a case study is used to support and validate the proposed model.
文摘itherto, a precision Concept for curve fitting problems has not been set. By using the theory of functional analysis, the author of this paper established a space theory basis for curve fitting problems. Also given in the paper is the precision concept of the curve fitting problems and the method for constructing the fitting of a curve satisfying given precision requirements.