OBJECTIVE:To explore the effect of acupuncture treatment on cerebral ischaemia-reperfusion injury(CIRI)and reveal the underlying mechanism of the effect based on nuclear receptor coactivator 4(NCOA4)mediated ferritino...OBJECTIVE:To explore the effect of acupuncture treatment on cerebral ischaemia-reperfusion injury(CIRI)and reveal the underlying mechanism of the effect based on nuclear receptor coactivator 4(NCOA4)mediated ferritinophagy.METHODS:Sprague-Dawley male rats were divided into four groups:the sham group,model group,acupuncture group,and sham acupuncture group.After 2 h of middle cerebral artery occlusion(MCAO),reperfusion was performed for 24 h to induce CIRI.The rats were treated with acupuncture at the Neiguan(PC6)and Shuigou(GV26)acupoints.Their neurological function was evaluated by taking their Bederson scores at 2 h after ischaemia and 24 h after reperfusion.Triphenyltetrazolium chloride staining was applied to assess the cerebral infarct volume at 24 h after reperfusion.The malondialdehyde(MDA)and ferrous iron(Fe^(2+))levels were observed after 24 h of reperfusion using an assay kit.Western blotting was performed to detect the expression of NCOA4 and ferritin heavy chain 1(FTH1)at 24 h after reperfusion.Moreover,the colocalization of ferritin with neurons,NCOA4 with microtubule-associated protein 1 light chain 3(LC3),and NCOA4 with ferritin was visualized using immunofluorescence staining.RESULTS:Acupuncture significantly improved neurological function and decreased cerebral infarct volume in the acupuncture group.Following CIRI,the expression of NCOA4,LC3 and FTH1 was increased,which enhanced ferritinophagy and induced an inappropriate accumulation of Fe^(2+)and MDA in the ischaemic brain.However,acupuncture dramatically downregulated the expression of NCOA4,LC3 and FTH1,inhibited the overactivation of ferritinophagy,and decreased the levels of MDA and Fe^(2+).CONCLUSIONS:Acupuncture can inhibit NCOA4-mediated ferritinophagy and protect neurons against CIRI in a rat model.展开更多
Ferroptosis is a regulated form of cell death which is considered an oxidative iron-dependent process.The lipid hydroperoxidase glutathione peroxidase 4 prevents the iron(Fe2+)-dependent formation of toxic lipid react...Ferroptosis is a regulated form of cell death which is considered an oxidative iron-dependent process.The lipid hydroperoxidase glutathione peroxidase 4 prevents the iron(Fe2+)-dependent formation of toxic lipid reactive oxygen species.While emerging evidence indicates that inhibition of glutathione peroxidase 4 as a hallmark of ferroptosis in many cancer cell lines,the involvement of this biochemical pathway in neuronal death remains largely unclear.Here,we investigate,first whether the ferroptosis key players are involved in the neuronal cell death induced by erastin.The second objective was to examine whether there is a cross talk between ferroptosis and autophagy.The third main was to address neuron response to erastin,with a special focus on ferritin and nuclear receptor coactivator 4-mediated ferritinophagy.To test this in neurons,erastin(0.5-8μM)was applied to hippocampal HT22 neurons for 16 hours.In addition,cells were cultured with the autophagy inhibitor,3-methyladenin(10 mM)and/or ferroptosis inhibitors,ferrostatin 1(10-20μM)or deferoxamine(10-200μM)before exposure to erastin.In this study,we demonstrated by immunofluorescence and western blot analysis,that erastin downregulates dramatically the expression of glutathione peroxidase 4,the sodium-independent cystine-glutamate antiporter and nuclear receptor coactivator 4.The protein levels of ferritin and mitochondrial ferritin in HT22 hippocampal neurons did not remarkably change following erastin treatment.In addition,we demonstrated that not only the ferroptosis inhibitor,ferrostatin1/deferoxamine abrogated the ferroptotic cell death induced by erastin in hippocampal HT22 neurons,but also the potent autophagy inhibitor,3-methyladenin.We conclude that(1)erastin-induced ferroptosis in hippocampal HT22 neurons,despite reduced nuclear receptor coactivator 4 levels,(2)that either nuclear receptor coactivator 4-mediated ferritinophagy does not occur or is of secondary importance in this model,(3)that ferroptosis seems to share some features of the autophagic cell death process.展开更多
基金the National Natural Science Foundation of China:Mechanism of Acupuncture in Extending Thrombolytic Time Window of Cerebral Infarction Based on Nuclear Receptor Coactivator 4 Mediated Ferritinophagy(No.82205238)National Natural Science Foundation of China:Exploring the Mechanism of Acupuncture Improving Thrombolytic Safety in Cerebral Infarction through the ERK1/2-mTOR Pathway Based on Autophagy Apoptosis Interaction(No.82074525)+1 种基金Natural Science Foundation of Jiangsu Province:Experimental Study on Acupuncture Regulation of Ferroptosis-NLRP3 Inflammasome Pathway to Reduce Hemorrhagic Transformation after Thrombolysis in Cerebral Infarction(No.BK20210689)Traditional Chinese Medicine Science and Technology Development Plan Project of Jiangsu Province:Clinical and Experimental Study on Acupuncture Improving the Safety of rt-PA Intravenous Thrombolysis in Cerebral Infarction(No.YB2020005)。
文摘OBJECTIVE:To explore the effect of acupuncture treatment on cerebral ischaemia-reperfusion injury(CIRI)and reveal the underlying mechanism of the effect based on nuclear receptor coactivator 4(NCOA4)mediated ferritinophagy.METHODS:Sprague-Dawley male rats were divided into four groups:the sham group,model group,acupuncture group,and sham acupuncture group.After 2 h of middle cerebral artery occlusion(MCAO),reperfusion was performed for 24 h to induce CIRI.The rats were treated with acupuncture at the Neiguan(PC6)and Shuigou(GV26)acupoints.Their neurological function was evaluated by taking their Bederson scores at 2 h after ischaemia and 24 h after reperfusion.Triphenyltetrazolium chloride staining was applied to assess the cerebral infarct volume at 24 h after reperfusion.The malondialdehyde(MDA)and ferrous iron(Fe^(2+))levels were observed after 24 h of reperfusion using an assay kit.Western blotting was performed to detect the expression of NCOA4 and ferritin heavy chain 1(FTH1)at 24 h after reperfusion.Moreover,the colocalization of ferritin with neurons,NCOA4 with microtubule-associated protein 1 light chain 3(LC3),and NCOA4 with ferritin was visualized using immunofluorescence staining.RESULTS:Acupuncture significantly improved neurological function and decreased cerebral infarct volume in the acupuncture group.Following CIRI,the expression of NCOA4,LC3 and FTH1 was increased,which enhanced ferritinophagy and induced an inappropriate accumulation of Fe^(2+)and MDA in the ischaemic brain.However,acupuncture dramatically downregulated the expression of NCOA4,LC3 and FTH1,inhibited the overactivation of ferritinophagy,and decreased the levels of MDA and Fe^(2+).CONCLUSIONS:Acupuncture can inhibit NCOA4-mediated ferritinophagy and protect neurons against CIRI in a rat model.
基金supported in part by a research grant from the Messer Stiftung,No.8571013(to AR).
文摘Ferroptosis is a regulated form of cell death which is considered an oxidative iron-dependent process.The lipid hydroperoxidase glutathione peroxidase 4 prevents the iron(Fe2+)-dependent formation of toxic lipid reactive oxygen species.While emerging evidence indicates that inhibition of glutathione peroxidase 4 as a hallmark of ferroptosis in many cancer cell lines,the involvement of this biochemical pathway in neuronal death remains largely unclear.Here,we investigate,first whether the ferroptosis key players are involved in the neuronal cell death induced by erastin.The second objective was to examine whether there is a cross talk between ferroptosis and autophagy.The third main was to address neuron response to erastin,with a special focus on ferritin and nuclear receptor coactivator 4-mediated ferritinophagy.To test this in neurons,erastin(0.5-8μM)was applied to hippocampal HT22 neurons for 16 hours.In addition,cells were cultured with the autophagy inhibitor,3-methyladenin(10 mM)and/or ferroptosis inhibitors,ferrostatin 1(10-20μM)or deferoxamine(10-200μM)before exposure to erastin.In this study,we demonstrated by immunofluorescence and western blot analysis,that erastin downregulates dramatically the expression of glutathione peroxidase 4,the sodium-independent cystine-glutamate antiporter and nuclear receptor coactivator 4.The protein levels of ferritin and mitochondrial ferritin in HT22 hippocampal neurons did not remarkably change following erastin treatment.In addition,we demonstrated that not only the ferroptosis inhibitor,ferrostatin1/deferoxamine abrogated the ferroptotic cell death induced by erastin in hippocampal HT22 neurons,but also the potent autophagy inhibitor,3-methyladenin.We conclude that(1)erastin-induced ferroptosis in hippocampal HT22 neurons,despite reduced nuclear receptor coactivator 4 levels,(2)that either nuclear receptor coactivator 4-mediated ferritinophagy does not occur or is of secondary importance in this model,(3)that ferroptosis seems to share some features of the autophagic cell death process.