Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp...Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.展开更多
The role of serum and glucocorticoid-induced kinase 1 (SGK1) pathway in the connective tissue growth factor (CTGF) expression was investigated in cultured human mesangial cells (HMCs) under high glucose. By usin...The role of serum and glucocorticoid-induced kinase 1 (SGK1) pathway in the connective tissue growth factor (CTGF) expression was investigated in cultured human mesangial cells (HMCs) under high glucose. By using RT-PCR and Western blot, the effect of SGK1 on the CTGF expression in HMCs under high glucose was examined. Overexpression of active SGK1 in HMCs transfected with PIRES2-EGFP- S422D hSGK1 (SD) could increase the expression of phosphorylated SGK1 and CTGF as compared with HMCs groups transfected with PIRES2-EGFP (FP) under high glucose or normal glucose. Overexpression of inactive SGK1 in HMCs transfected with PIRES2-EGFP- K127N hSGK1 (KN) could decrease phosphorylated SGK1 and CTGF expression as compared with HMCs groups transfected with FP under high glucose. In conclusion, these results suggest that high glucose-induced CTGF expression is mediated through the active SGK1 in HMCs.展开更多
The expression of serum and glucocorticoid-induced protein kinase in the renal cortex of diabetic rats was examined, and the function of signal transduction mediated by SGK1 in diabetic nephropathy and its modulation ...The expression of serum and glucocorticoid-induced protein kinase in the renal cortex of diabetic rats was examined, and the function of signal transduction mediated by SGK1 in diabetic nephropathy and its modulation by fluvastatin were also investigated. 24 male Wistar rats were randomly divided into normal control group (n = 8), diabetic nephropathy group (n = 8) and fluvastatin-treated diabetic nephropathy group (15 mg/kg/d, n=8). The metabolic parameters were measured at the 8th week. The expression of transforming growth factor β1 (TGF-β1) and fibronectin (FN) was immunohistochemically examined. The expression of SGK1 was detected by RT-PCR and Western blot, and CTGF mRNA was assessed by RT-PCR. As compared to DN, blood glucose, 24-h urinary protein, Cer and kidney weight index were all decreased and the weight was increased obviously in group F. At the same time, mesangial cells and extracellular matrix proliferation were relieved significantly. The levels of cortex SGK1 mRNA and protein were up-regulated, and both TGF-β1 and FN were down-regulated by fluvastatin. The mRNA of SGK1 was positively correlated with the CTGF, TGF-β1 and FN. SGK1 expression is markedly up-regulated in the renal cortex of DN group and plays an important role in the development and progress of diabetic nephropathy by means of signal transduction. Fluvastatin suppressed the increased SGKlmRNA expression in renal cortex and postponed the development of diabetic nephropathy.展开更多
BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(...BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(ER)stress is one of the signaling pathways that induce apoptosis.Moreover,the protein kinase RNA-like endoplasmic reticulum kinase(PERK)-induced apoptotic pathway is the main way;but its role in liver injury remains unclear.Yinchenhao decoction(YCHD)is a traditional Chinese medicine formula that alleviates liver injury and apoptosis,yet its mechanism is unknown.We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice(OJ).AIM To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein(CHOP)-growth arrest and DNA damage-inducible protein 34(GADD34)pathway and B cell lymphoma/leukemia-2 related X protein(Bax)/B cell lymphoma/leukemia-2(Bcl-2)ratio.METHODS For in vivo experiments,30 rats were divided into three groups:control group,OJ model group,and YCHD-treated group.Blood was collected to detect the indicators of liver function,and liver tissues were used for histological analysis.For in vitro experiments,30 rats were divided into three groups:G1,G2,and G3.The rats in group G1 had their bile duct exposed without ligation,the rats in group G2 underwent total bile duct ligation,and the rats in group G3 were given a gavage of YCHD.According to the serum pharmacology,serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells.Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling(TUNEL)assay was used to detect BRL-3A hepatocyte apoptosis.Alanine aminotransferase(ALT)and aspartate transaminase(AST)levels in the medium were detected.Western blot and quantitative real-time polymerase chain reaction(qRT-PCR)analyses were used to detect protein and gene expression levels of PERK,CHOP,GADD34,Bax,and Bcl-2 in the liver tissues and BRL-3A cells.RESULTS Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group.The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ.Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ.Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK,CHOP,and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ.The Bax and Bcl-2 levels were increased,and the Bax/Bcl-2 ratio was also increased.When YCHD was used,the PERK,CHOP,GADD34,and Bax levels quickly decreased,while the Bcl-2 levels increased,and the Bax/Bcl-2 ratio decreased.CONCLUSION OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio.YCHD can attenuate these changes.展开更多
Casein kinase G (CKG) with more than 2500-fold enrichment was purified from Bufo bufo gargarizans ovaries. The catalytic activity of the enzyme was found to be associated with its 42 kD subunit, and its 26 kD subunit ...Casein kinase G (CKG) with more than 2500-fold enrichment was purified from Bufo bufo gargarizans ovaries. The catalytic activity of the enzyme was found to be associated with its 42 kD subunit, and its 26 kD subunit was found to be the major target for the enzyme auto-phosphorylation. Each full-grown oocyte contained 1.9 units of CKG corresponding to an intracellular concentration of 93 nM. After injecting an amount of 0.38 units of the enzyme into the oocyte, approximately 50% of the progesterone-induced maturation was inhibited. The inhibitory effect was enhanced in oocytes pretreated with spermine, which was consistent with the results that the enzyme was activated in vitro in the presence of spermine. The MPF-induced oocyte maturation was delayed and even prohibited in the kinase-microinjected oocytes. A 55 kD oocyte protein was identified as an substrate of CKG both in vivo and in vitro, and the enhancement of the 55 kD protein phosphorylation was associated with kinase inhibition on maturation and on protein synthesis in kinase-microinjected oocytes. As the endogenous spermine level decreased in the course of progesterone-induced oocyte maturation, 55 kD protein was dephospho-rylated. Heparin, a specific inhibitor of CKG, potentiated the progesterone-induced oocyte maturation. Altogether the experimental results indicated strongly that CKG may be the physiological target of spermine.展开更多
Summary: To investigate the expression and the role of three isoforms of Serum and Glucocorticoid-inducible Kinase (SGK) in experimental diabetic nephropathy (DN), 12 male C57BL/6 mice of 8-weeks-old were divided into...Summary: To investigate the expression and the role of three isoforms of Serum and Glucocorticoid-inducible Kinase (SGK) in experimental diabetic nephropathy (DN), 12 male C57BL/6 mice of 8-weeks-old were divided into two groups. Streptozotocin (STZ)-induced diabetic nephropathy and normal controls were analyzed at the end of the 4th week after the induction of diabetes. Renal hemodynamics and histological studies were performed. The expression of SGK1 mRNA, SGK2 mRNA and SGK3 mRNA of kidney cortex were measured by RT-PCR, and the cortical SGK1 protein was detected with Western blotting. Our results showed that the blood glucose, blood HbA1c, 24-h urinary protein, creatinine clearance and the renal index were all increased in DN group. More extracellular matrix (ECM) accumulation was observed. The level of cortical SGK1 mRNA and protein were up-regulated in DN group in comparison with control group. SGK2 and SGK3 mRNA were elevated in DN mice. In DN, mRNA level of three SGK isoforms and SGK1 protein were increased significantly. It is concluded that SGKs may contribute to the early renal injury of DN.展开更多
Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas,mainly the basal g...Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas,mainly the basal ganglia.The predominant clinical symptoms include spasticity,progressive dystonia,Parkinson's disease-like symptoms,neuropsychiatric alterations,and retinal degeneration.Among the neurodegeneration with brain iron accumulation disorders,the most frequent subtype is pantothenate kinase-associated neurodegeneration(PKAN) caused by defects in the gene encoding the enzyme pantothenate kinase 2(PANK2)which catalyzed the first reaction of the coenzyme A biosynthesis pathway.Currently there is no effective treatment to prevent the inexorable course of these disorders.The aim of this review is to open up a discussion on the utility of using cellular models derived from patients as a valuable tool for the development of precision medicine in PKAN.Recently,we have described that dermal fibroblasts obtained from PKAN patients can manifest the main pathological changes of the disease such as intracellular iron accumulation accompanied by large amounts of lipofuscin granules,mitochondrial dysfunction and a pronounced increase of markers of oxidative stress.In addition,PKAN fibroblasts showed a morphological senescence-like phenotype.Interestingly,pantothenate supplementation,the substrate of the PANK2 enzyme,corrected all pathophysiological alterations in responder PKAN fibroblasts with low/residual PANK2 enzyme expression.However,pantothenate treatment had no favourable effect on PKAN fibroblasts harbouring mutations associated with the expression of a truncated/incomplete protein.The correction of pathological alterations by pantothenate in individual mutations was also verified in induced neurons obtained by direct reprograming of PKAN fibroblasts.Our observations indicate that pantothenate supplementation can increase/stabilize the expression levels of PANK2 in specific mutations.Fibroblasts and induced neurons derived from patients can provide a useful tool for recognizing PKAN patients who can respond to pantothenate treatment.The presence of low but significant PANK2 expression which can be increased in particular mutations gives valuable information which can support the treatment with high dose of pantothenate.The evaluation of personalized treatments in vitro of fibroblasts and neuronal cells derived from PKAN patients with a wide range of pharmacological options currently available,and monitoring its effect on the pathophysiological changes,can help for a better therapeutic strategy.In addition,these cell models will be also useful for testing the efficacy of new therapeutic options developed in the future.展开更多
目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响...目的研究通痹颗粒对胶原诱导性关节炎(collagen-induced arthritis,CIA)大鼠铁调素(hepcidin,Hepc)、Janus激酶(janus kinase,JAK)2/信号转导子和转录激活子(signal transduction and activator of transcription,STAT)3信号通路的影响。方法选取36只雌性SD大鼠随机分成空白组、模型组、阳性对照组和通痹颗粒低、中、高剂量组,每组6只。空白组不予处理,其余组用牛Ⅱ型胶原建立CIA模型。造模完成后,空白组、模型组予生理盐水灌胃,其余各组分别以巴瑞替尼片和低、中、高剂量通痹颗粒灌胃。每天1次,连续4周。HE染色行滑膜组织病理学观察;酶联免疫吸附法测定血清Hepc、白细胞介素6(interleukin 6,IL-6)水平;逆转录-聚合酶链反应法测定滑膜中JAK2、STAT3、细胞信号因子传导抑制体(suppressor of cytokine signaling,SOCS)1、SOCS3的mRNA相对表达量;Western blot法检测滑膜中JAK2、p-JAK2、STAT3、p-STAT3、SOCS1、SOCS3的蛋白表达量。结果模型组见滑膜上皮结构缺损,滑膜重度增生,排列紊乱,并有大量炎症细胞浸润和多个血管翳形成;各给药组滑膜炎症均有所减轻,阳性对照组优于通痹颗粒高剂量组,通痹颗粒中、高剂量组优于低剂量组。与模型组相比,各给药组关节炎指数评分、血清Hepc和IL-6水平均显著降低(P<0.01);与阳性对照组相比,通痹颗粒中、低剂量组关节炎指数评分、血清Hepc和IL-6水平均升高(P<0.05)。与模型组比较,阳性对照组和通痹颗粒低、中、高剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均降低(P<0.05),而通路抑制因子SOCS1、SOCS3 mRNA和蛋白的表达均升高(P<0.05);与阳性对照组比较,通痹颗粒各剂量组JAK2、STAT3 mRNA和蛋白以及p-JAK2、p-STAT3的蛋白表达量均升高(P<0.05),而SOCS1、SOCS3 mRNA和蛋白的表达均降低(P<0.05)。结论通痹颗粒能够改善CIA大鼠滑膜炎症,其机制可能与抑制JAK2/STAT3信号通路而减少Hepc的表达有关。展开更多
Background Insulin resistance is an underlying feature of both type 2 diabetes and metabolic syndrome. Currently, it is unclear whether nuclear factor (NF)-KB inducing kinase (NIK) plays a role in the development ...Background Insulin resistance is an underlying feature of both type 2 diabetes and metabolic syndrome. Currently, it is unclear whether nuclear factor (NF)-KB inducing kinase (NIK) plays a role in the development of insulin resistance. The present in vivo study investigated the roles of NIK and IKB kinase a (IKKa) in obesity-induced insulin resistance using animal models. Methods NIK expression was evaluated by Western blotting in male Lepob mice and C57BL/6J mice fed a high-fat diet (HFD) (45% fat). After metformin and sulfasalazine treatment, NIK expression was investigated during the improvement of insulin resistance. Results NIK was increased by about 1-fold in the renal tissues of Lepab mice and C57BL/6J mice fed a HFD for 12 weeks. After 1 and 3 weeks of high-fat feeding, we observed an almost 50% decrease in NIK and IKKa expression in the liver and renal tissues of C57BL/6J mice. NIK expression was significantly lower in the liver and renal tissues of HFD-fed mice that were treated with insulin sensitizers, metformin and sulfasalazine. However, IKKa expression was increased after metformin treatment in both tissues. Conclusion These results suggest a possible role of NIK in the liver and renal tissues of insulin-resistant mice.展开更多
文摘Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways.
基金a grant from the National Natural Sciences Foundation of China (No. 30600810)
文摘The role of serum and glucocorticoid-induced kinase 1 (SGK1) pathway in the connective tissue growth factor (CTGF) expression was investigated in cultured human mesangial cells (HMCs) under high glucose. By using RT-PCR and Western blot, the effect of SGK1 on the CTGF expression in HMCs under high glucose was examined. Overexpression of active SGK1 in HMCs transfected with PIRES2-EGFP- S422D hSGK1 (SD) could increase the expression of phosphorylated SGK1 and CTGF as compared with HMCs groups transfected with PIRES2-EGFP (FP) under high glucose or normal glucose. Overexpression of inactive SGK1 in HMCs transfected with PIRES2-EGFP- K127N hSGK1 (KN) could decrease phosphorylated SGK1 and CTGF expression as compared with HMCs groups transfected with FP under high glucose. In conclusion, these results suggest that high glucose-induced CTGF expression is mediated through the active SGK1 in HMCs.
文摘The expression of serum and glucocorticoid-induced protein kinase in the renal cortex of diabetic rats was examined, and the function of signal transduction mediated by SGK1 in diabetic nephropathy and its modulation by fluvastatin were also investigated. 24 male Wistar rats were randomly divided into normal control group (n = 8), diabetic nephropathy group (n = 8) and fluvastatin-treated diabetic nephropathy group (15 mg/kg/d, n=8). The metabolic parameters were measured at the 8th week. The expression of transforming growth factor β1 (TGF-β1) and fibronectin (FN) was immunohistochemically examined. The expression of SGK1 was detected by RT-PCR and Western blot, and CTGF mRNA was assessed by RT-PCR. As compared to DN, blood glucose, 24-h urinary protein, Cer and kidney weight index were all decreased and the weight was increased obviously in group F. At the same time, mesangial cells and extracellular matrix proliferation were relieved significantly. The levels of cortex SGK1 mRNA and protein were up-regulated, and both TGF-β1 and FN were down-regulated by fluvastatin. The mRNA of SGK1 was positively correlated with the CTGF, TGF-β1 and FN. SGK1 expression is markedly up-regulated in the renal cortex of DN group and plays an important role in the development and progress of diabetic nephropathy by means of signal transduction. Fluvastatin suppressed the increased SGKlmRNA expression in renal cortex and postponed the development of diabetic nephropathy.
基金Supported by the National Natural Science Foundation of China,No.81273952
文摘BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(ER)stress is one of the signaling pathways that induce apoptosis.Moreover,the protein kinase RNA-like endoplasmic reticulum kinase(PERK)-induced apoptotic pathway is the main way;but its role in liver injury remains unclear.Yinchenhao decoction(YCHD)is a traditional Chinese medicine formula that alleviates liver injury and apoptosis,yet its mechanism is unknown.We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice(OJ).AIM To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein(CHOP)-growth arrest and DNA damage-inducible protein 34(GADD34)pathway and B cell lymphoma/leukemia-2 related X protein(Bax)/B cell lymphoma/leukemia-2(Bcl-2)ratio.METHODS For in vivo experiments,30 rats were divided into three groups:control group,OJ model group,and YCHD-treated group.Blood was collected to detect the indicators of liver function,and liver tissues were used for histological analysis.For in vitro experiments,30 rats were divided into three groups:G1,G2,and G3.The rats in group G1 had their bile duct exposed without ligation,the rats in group G2 underwent total bile duct ligation,and the rats in group G3 were given a gavage of YCHD.According to the serum pharmacology,serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells.Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling(TUNEL)assay was used to detect BRL-3A hepatocyte apoptosis.Alanine aminotransferase(ALT)and aspartate transaminase(AST)levels in the medium were detected.Western blot and quantitative real-time polymerase chain reaction(qRT-PCR)analyses were used to detect protein and gene expression levels of PERK,CHOP,GADD34,Bax,and Bcl-2 in the liver tissues and BRL-3A cells.RESULTS Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group.The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ.Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ.Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK,CHOP,and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ.The Bax and Bcl-2 levels were increased,and the Bax/Bcl-2 ratio was also increased.When YCHD was used,the PERK,CHOP,GADD34,and Bax levels quickly decreased,while the Bcl-2 levels increased,and the Bax/Bcl-2 ratio decreased.CONCLUSION OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio.YCHD can attenuate these changes.
文摘Casein kinase G (CKG) with more than 2500-fold enrichment was purified from Bufo bufo gargarizans ovaries. The catalytic activity of the enzyme was found to be associated with its 42 kD subunit, and its 26 kD subunit was found to be the major target for the enzyme auto-phosphorylation. Each full-grown oocyte contained 1.9 units of CKG corresponding to an intracellular concentration of 93 nM. After injecting an amount of 0.38 units of the enzyme into the oocyte, approximately 50% of the progesterone-induced maturation was inhibited. The inhibitory effect was enhanced in oocytes pretreated with spermine, which was consistent with the results that the enzyme was activated in vitro in the presence of spermine. The MPF-induced oocyte maturation was delayed and even prohibited in the kinase-microinjected oocytes. A 55 kD oocyte protein was identified as an substrate of CKG both in vivo and in vitro, and the enhancement of the 55 kD protein phosphorylation was associated with kinase inhibition on maturation and on protein synthesis in kinase-microinjected oocytes. As the endogenous spermine level decreased in the course of progesterone-induced oocyte maturation, 55 kD protein was dephospho-rylated. Heparin, a specific inhibitor of CKG, potentiated the progesterone-induced oocyte maturation. Altogether the experimental results indicated strongly that CKG may be the physiological target of spermine.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No. 30270618).
文摘Summary: To investigate the expression and the role of three isoforms of Serum and Glucocorticoid-inducible Kinase (SGK) in experimental diabetic nephropathy (DN), 12 male C57BL/6 mice of 8-weeks-old were divided into two groups. Streptozotocin (STZ)-induced diabetic nephropathy and normal controls were analyzed at the end of the 4th week after the induction of diabetes. Renal hemodynamics and histological studies were performed. The expression of SGK1 mRNA, SGK2 mRNA and SGK3 mRNA of kidney cortex were measured by RT-PCR, and the cortical SGK1 protein was detected with Western blotting. Our results showed that the blood glucose, blood HbA1c, 24-h urinary protein, creatinine clearance and the renal index were all increased in DN group. More extracellular matrix (ECM) accumulation was observed. The level of cortical SGK1 mRNA and protein were up-regulated in DN group in comparison with control group. SGK2 and SGK3 mRNA were elevated in DN mice. In DN, mRNA level of three SGK isoforms and SGK1 protein were increased significantly. It is concluded that SGKs may contribute to the early renal injury of DN.
基金supported by FIS PI16/00786 grant,Instituto de Salud Carlos Ⅲ,Spain and Fondo Europeo de Desarrollo Regional(FEDER-Unión Europea),Proyectos de Investigación de Excelencia de la Junta de Andalucía CTS-5725AEPMI(Asociación de Enfermos de Patología Mitocondrial) and ENACH(Asociación de Enfermos de Neurodegeneración con Acumulación Cerebral de Hierro)(to JASA)
文摘Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas,mainly the basal ganglia.The predominant clinical symptoms include spasticity,progressive dystonia,Parkinson's disease-like symptoms,neuropsychiatric alterations,and retinal degeneration.Among the neurodegeneration with brain iron accumulation disorders,the most frequent subtype is pantothenate kinase-associated neurodegeneration(PKAN) caused by defects in the gene encoding the enzyme pantothenate kinase 2(PANK2)which catalyzed the first reaction of the coenzyme A biosynthesis pathway.Currently there is no effective treatment to prevent the inexorable course of these disorders.The aim of this review is to open up a discussion on the utility of using cellular models derived from patients as a valuable tool for the development of precision medicine in PKAN.Recently,we have described that dermal fibroblasts obtained from PKAN patients can manifest the main pathological changes of the disease such as intracellular iron accumulation accompanied by large amounts of lipofuscin granules,mitochondrial dysfunction and a pronounced increase of markers of oxidative stress.In addition,PKAN fibroblasts showed a morphological senescence-like phenotype.Interestingly,pantothenate supplementation,the substrate of the PANK2 enzyme,corrected all pathophysiological alterations in responder PKAN fibroblasts with low/residual PANK2 enzyme expression.However,pantothenate treatment had no favourable effect on PKAN fibroblasts harbouring mutations associated with the expression of a truncated/incomplete protein.The correction of pathological alterations by pantothenate in individual mutations was also verified in induced neurons obtained by direct reprograming of PKAN fibroblasts.Our observations indicate that pantothenate supplementation can increase/stabilize the expression levels of PANK2 in specific mutations.Fibroblasts and induced neurons derived from patients can provide a useful tool for recognizing PKAN patients who can respond to pantothenate treatment.The presence of low but significant PANK2 expression which can be increased in particular mutations gives valuable information which can support the treatment with high dose of pantothenate.The evaluation of personalized treatments in vitro of fibroblasts and neuronal cells derived from PKAN patients with a wide range of pharmacological options currently available,and monitoring its effect on the pathophysiological changes,can help for a better therapeutic strategy.In addition,these cell models will be also useful for testing the efficacy of new therapeutic options developed in the future.
文摘Background Insulin resistance is an underlying feature of both type 2 diabetes and metabolic syndrome. Currently, it is unclear whether nuclear factor (NF)-KB inducing kinase (NIK) plays a role in the development of insulin resistance. The present in vivo study investigated the roles of NIK and IKB kinase a (IKKa) in obesity-induced insulin resistance using animal models. Methods NIK expression was evaluated by Western blotting in male Lepob mice and C57BL/6J mice fed a high-fat diet (HFD) (45% fat). After metformin and sulfasalazine treatment, NIK expression was investigated during the improvement of insulin resistance. Results NIK was increased by about 1-fold in the renal tissues of Lepab mice and C57BL/6J mice fed a HFD for 12 weeks. After 1 and 3 weeks of high-fat feeding, we observed an almost 50% decrease in NIK and IKKa expression in the liver and renal tissues of C57BL/6J mice. NIK expression was significantly lower in the liver and renal tissues of HFD-fed mice that were treated with insulin sensitizers, metformin and sulfasalazine. However, IKKa expression was increased after metformin treatment in both tissues. Conclusion These results suggest a possible role of NIK in the liver and renal tissues of insulin-resistant mice.