In order to establish high-yield and high-efficient cultivation technology for ginger in the central region of Shandong Province, the effects of different manage-ment modes on yield of ginger, nutrient efficiency and ...In order to establish high-yield and high-efficient cultivation technology for ginger in the central region of Shandong Province, the effects of different manage-ment modes on yield of ginger, nutrient efficiency and soil nitrate were carried out by field experiment. Four management modes were farmer convention mode, high yield and high efficiency mode, super high yield mode and super high yield and high efficiency mode, in which farmer convention mode was local farmers ’ conven-tional cropping methods, the other three management modes were optimized combi-nations of al management measures under a certain goal of increasing yield and efficiency. The results were as fol ows: ginger yield and nitrogen fertilizer efficiency under such three optimized management measures combinations as high yield and high efficiency mode, super high yield mode and super high yield and high efficien-cy mode were al higher than these of farmer convention mode, moreover, com-pared with farmer convention mode, the yield increased by 11.85%, 25.75% and 23.34%, respectively, and nitrogen fertilizer efficiency increased by 47.94%, 11.24%and 33.14%, respectively. Thereinto, the yield under super high yield mode were the greatest,and nitrogen fertilizer efficiency under high yield and high efficiency mode was the highest.展开更多
[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei ho...[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.展开更多
[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyl...[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.展开更多
Improving crop nutrient ef ficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements,among them,n...Improving crop nutrient ef ficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements,among them,nitrogen(N) and phosphorus(P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity,and thereby have become high priority targets for improving nutrient ef ficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore,root architecture,the 3-dimensional con figuration of the plant's root system in the soil,is of great importance for improving crop nutrient ef ficiency. Furthermore,the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria,are additional important strategies to enhance nutrient acquisition. In this review,we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses,through gene or QTL regulation,which results in enhanced nutrient acquisition.展开更多
Increasing crop yields can provide food,animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For exampl...Increasing crop yields can provide food,animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency(primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.展开更多
Fertilization is essential for oilseed rape because it is sensitivity to nutrient deficiency, especially for winter oilseed rape(Brassica napus L.). To investigate regional nutrient efficiency and nutrient uptake-yiel...Fertilization is essential for oilseed rape because it is sensitivity to nutrient deficiency, especially for winter oilseed rape(Brassica napus L.). To investigate regional nutrient efficiency and nutrient uptake-yield relationship of winter oilseed rape in an intensive cropping system, this study used data from 619 site-year on-farm experiments carried out in the winter oilseed rape planting area of the Yangtze River Basin, China from 2005 to 2010, with large yield in the range of 179–4 470 kg ha^(-1). Currently recommended application rates of N, P and K fertilizers increased rapeseed yield at different levels of soil indigenous nutrient supply(INS) in this region. Boundary values of plant nutrient uptake were established to analyze the nutrient uptake-yield relationship of winter oilseed rape(internal nutrient efficiency), i.e., 128 kg N ha^(-1), 24 kg P ha^(-1), and 122 kg K ha^(-1). The internal nutrient efficiency declined by 48.2%–64.1% when nutrient uptake exceeded the boundary value, resulting in excessive nutrient uptake(i.e., low yield response with high nutrient uptake), especially for K. In the intensive cropping system, agronomic efficiencies of N, P, and K were 5.9, 3.4, and3.6 kg kg^(-1), and recovery efficiencies of N, P, and K were 35.6%, 24.1%, and 36.8%, respectively. These findings showed that the fertilization rate should be optimized by considering INS, nutrient status, and nutrient efficiency of winter oilseed rape. In this study,considering the lower yield improvement to high K uptake levels and low K fertilizer efficiency, application rate of K fertilizer should be reduced since soil K deficiency has already been mitigated.展开更多
Potassium is one of the most important nutrients for rice production in many areas of Asia, especially in southeast China where potassium deficiency in soil is a widespread problem. Field experiments were conducted fo...Potassium is one of the most important nutrients for rice production in many areas of Asia, especially in southeast China where potassium deficiency in soil is a widespread problem. Field experiments were conducted for four consecutive years in Jinhua City, Zhejiang Province, to determine utilization of nutrients (N, P and K) by inbred and hybrid rice and rice grain yields as affected by application of potassium fertilizer under irrigated conditions. Grain yield and nutrient harvest index showed a significant response to the NPK treatment as compared to the NP treatment. This suggested that potassium improved transfer of nitrogen and phosphorus from stems and leaves to panicles in rice plants. N and P use efficiencies of rice were not strongly responsive to potassium, but K use efficiency decreased significantly despite the fact that the amount of total K uptake increased. A significant difference between varieties was also observed with respect to nutrient uptake and use efficiency. Hybrid rice exhibited physiological advantage in N and P uptake and use efficiency over inbred rice. Analysis of annual dynamic change of exchangeable K and non-exchangeable K in the test soil indicated that non-exchangeable K was an important K source for rice. Potassium application caused an annual decrease in the concentration of available K in the soil tested, whereas an increase was observed in non-exchangeable K. It could be concluded that K fertilizer application at the rate of 100 kg ha-1 per season was not high enough to match K output, and efficient K management for rice must be based on the K input/output balance.展开更多
Agricultural land use and management practices may affect soil properties,which play a critical role in sustaining crop production.Since the late 1970s,several new agricultural land use types had been introduced in th...Agricultural land use and management practices may affect soil properties,which play a critical role in sustaining crop production.Since the late 1970s,several new agricultural land use types had been introduced in the rural areas of China.The purpose of this study is to evaluate the effect of these land use changes on the soil properties,nu-trient absorption rate,and nutrient use economic efficiency ratio in an agricultural area of Beijing.Specifically,the cropland,the orchard and the vegetable field were examined.Results of this study suggest that land use and farming management practices significantly affect the content of soil organic carbon (SOC),total nitrogen (TN),total phos-phorus (TP),and available phosphorus in the surface layer of 0-25 cm (p<0.05) in the Yanqing Basin,northwestern Beijing.Soil nutrients in each agricultural land use type decrease rapidly with the increasing soil depth.Orchard and vegetable field tend to have higher soil nutrients than the cropland does.However,the soil nutrient-absorption rate (NAR) of the orchard and vegetable field is lower than that of the cropland,even though orchard and vegetable field may provide much higher economic benefit.While increasing SOC,TN,and TP in the orchard and vegetable field by intensive farming may be a valuable option to improve soil quality,potential increase in the risk of nutrient loss,or agricultural non-point source pollution can be a tradeoff if the intensive practices are not managed appropriately.展开更多
Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to ...Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.展开更多
The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an e...The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.展开更多
The primary challenge of mineland revegetation is the establishment of species able to cope with low availability of nutrients,especially in steep slopes such as of mine pits.We evaluated plant growth response and nut...The primary challenge of mineland revegetation is the establishment of species able to cope with low availability of nutrients,especially in steep slopes such as of mine pits.We evaluated plant growth response and nutrient use efficiency(NUE)of two promising native Fabaceae species(Dioclea apurensis—liana from metalliferous savannas;Bauhinia longipedicellata—tree from Amazon rainforest)from the Caraja´s Mineral Province,eastern Amazon-Brazil.Plants were grown separately in 2-kg pots filled with mining waste.Substrates were fertilized with nitrogen,phosphorus,potassium(NPK),lime,and micronutrients.The results showed increments on growth of both species when nutrients were applied to the mining waste.D.apurensis showed increases in leaf area,plant height,stem diameter,and shoot dry mass production when NPK or NPK?micronutrients were applied,while B.longipedicelata was responsive to application of NPK?lime or NPK?lime?micronutrients.Further,D.apurensis showed higher NUE than B.longipedicelata,especially at the lowest doses of N,P and K.These findings may indicate a substantial advantage of D.apurensis for mineland revegetation,as this species may require lower nutrient inputs,being,therefore,a more sustainable way to revegetate degraded areas.展开更多
Safflower represents an important oil crop internationally and may have a production potential under low input conditions, but its putatively high phosphorous use efficiency is not sustained. This study aims to direct...Safflower represents an important oil crop internationally and may have a production potential under low input conditions, but its putatively high phosphorous use efficiency is not sustained. This study aims to directly compare safflower with sunflower in terms of phosphorus use efficiency in nutrient solution under controlled conditions. Growth of both species responded strongly to increasing P supply. Safflower recovers less proportion of added P than sunflower. External P requirement ((g P supply (100 g dry matter (DM) produced)~) was higher in safflower than sunflower. The efficiency of the crops for DM production based on accumulated P (mg P potl, efficiency ratio), and P concentration in DM ((mg P (g DM)'I), utilization index) were interpreted using Michaelis-Menten kinetics as growth response curves. Accordingly, Km constant was lower in sunflower compared to safflower in terms of utilization index, but both were similar in terms of efficiency ratio. High Km constant in safflower in terms of utilization index indicates the high P concentration in tissues to produce 50% of potential maximum DM, consequently less efficient crop. Utilization efficiency contributed more than uptake efficiency in overall PUE in the efficient cultivar and could be the cause of its superiority in PUE. It can be concluded that safflower has a high requirement for P with respect to growth, sunflower is more efficient in terms of uptake and utilization of P at optimal and sub-optimal P supplies indicating that safflower can not be considered a low nutrient input crop compared to sunflower with respect to phosphorus.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly l...China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China.展开更多
The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility...The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance.展开更多
Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, ...Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, 7.5 and 9.0 plants m^-2) and three fertilization modes(no fertilizer, 0 F;one-off application of slow-released fertilizer, SF;twice application of conventional fertilizer, CF). Results indicated that the grain yields and N, P and K use efficiencies under SF with the optimal planting density(7.5 plants m^-2) were the highest among all the treatments in 2016 and 2017. Compared with CF, SF could increase post-silking dry matter accumulation and promote N, P and K uptake at pre-and post-silking stages;this treatment increased grain N, P and K concentrations and resulted in high N, P and K use efficiencies. Nutrient(N, P and K) absorption efficiencies and partial productivity, and nutrient(N and P) recovery efficiency in SF treatment were significantly higher than those in CF treatments under the planting density of 7.5 plants m^-2. Under both SF and CF conditions, the grain yield, total N accumulation and nutrient use efficiencies initially increased, peaked at planting density of 7.5 plants m^-2, and then decreased with increasing plant density. Based on the yield and nutrient use efficiency in two years, plant density of 7.5 plants m^-2 with SF can improve both the grain yield and N, P and K use efficiency of spring maize in Jiangsu Province, China.展开更多
Leaf litterfall,litter decomposition and nutrient return through litterfall of three dominant species,i.e.Quercus serrata,Schima wallichi and Lithocarpus dealbata were studied in different months throughout the year t...Leaf litterfall,litter decomposition and nutrient return through litterfall of three dominant species,i.e.Quercus serrata,Schima wallichi and Lithocarpus dealbata were studied in different months throughout the year to assess the input and release of nutrient in the forest soil of a sub-tropical mixed oak forest of Manipur,northeastern India.Oaks in northeastern region of India are economically important species for the production of Tasar silk.The monthly litterfall ranged from 25.6 g·m^-2(July) to 198.0 g·m^-2(February) and annual litterfall was 1093.8g·m^-2 in the forest site.At initial month(on November 3),the concentrations of N and C were the highest in L.dealbata,followed by Q.serrata and lowest in S.wallichi,whereas lignin and cellulose concentrations at initial month were the highest in S.wallichi,followed by Q.serrata and L.dealbata.L.dealbata(k=0.54) exhibited a high rate of litter decomposition,coinciding with high concentrations of N and C and low cellulose in the litter at initial month.However,low rate of litter decomposition in S.wallichi(k=0.33) coincided with low value of N and C and highest value of lignin and cellulose at initial month.The remaining biomass in different months was positively correlated with the lignin,C,C/N ratio and cellulose,but it negatively correlated with nitrogen concentrations at initial month.The rate of litter decomposition was the highest in rainy summer months,owing to congenial environmental conditions and lowest rate of litter decomposition in cool and dry winter months.展开更多
Nutrient balance is essential for attaining high yield and improving profits in agricultural farming systems,and crop nutrient uptake ratio and stoichiometry can indicate crop nutrient limitations in the field.We coll...Nutrient balance is essential for attaining high yield and improving profits in agricultural farming systems,and crop nutrient uptake ratio and stoichiometry can indicate crop nutrient limitations in the field.We collected a large amount of field data to study the variations in yield,nutrient uptake and nutrient stoichiometry of peanut(Arachis hypogaea L.)in Southeast China(SEC),North-central China(NCC),and Northeast China(NEC),during 1993 to 2018.Peanut pod yield gradually increased from 1993 to 2018,with average yields of 4148,5138,and 4635 kg ha–1 in SEC,NCC,and NEC,respectively.The nitrogen(N)internal efficiency(NIE,yield to N uptake ratio)was similar among the three regions,but phosphorus(P)IE(PIE,yield to P uptake ratio)changed from low to high among regions:NCC<SEC<NEC,while potassium(K)IE(KIE,yield to K uptake ratio)portrayed a different pattern of SEC<NCC<NEC.Based on the nutrient IE,to produce 1 Mg of pod yield,the average N,P,and K requirements of the above-ground parts of peanut were roughly 47.2,5.1,and 25.5 kg in SEC,44.8,5.7,and 20.6 kg in NCC,and 44.6,4.4,and 14.7 kg in NEC,respectively.The N/P ratio changed in the sequence NCC<SEC<NEC,and the N/K ratio was similar in NEC and NCC,but lower in SEC.The N harvest index(HI)and KHI declined with increasing nutrient uptake across all regions under high nutrient uptake.The low PIE and N/P ratios in NCC could be explained by the high P accumulation in stover,and high KIE and N/K ratios in NEC may be attributed to the low soil K supply.The frontier analysis approach provides a practical framework and allows documentation of a decline in nutrient HI as nutrient uptake increases.Lastly,this study reveals the limitation and surplus of nutrients of peanut in different regions of China.展开更多
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf li...We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha-1 a-1 for S. robusta to 11.03 ± 3.72 t ha-1 a-1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a-1) compared to S. robusta (2.41 ±0.30 a-1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P 〈 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P 〉 N 〉 K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N〉K^P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K 〉 P 〉 N) during decomposition of their leaf litter.Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.展开更多
Development and use of controlled release fertilizer (CRF) in southern China, potential advantages of CRF in increasing rice yield and nutrient use efficiency were introduced, as well as its role of minimizing rice fi...Development and use of controlled release fertilizer (CRF) in southern China, potential advantages of CRF in increasing rice yield and nutrient use efficiency were introduced, as well as its role of minimizing rice field’s environmental contamination was discussed. Meanwhile, some suggestions were proposed.展开更多
基金Supported by Agro-research Projects in Public Interest "Study and Development of Key Technology of Scallion,Ginger and Garlic Industry"(200903018)the Project of Shandong Science and Technology Development Plan(2013GGC02022)~~
文摘In order to establish high-yield and high-efficient cultivation technology for ginger in the central region of Shandong Province, the effects of different manage-ment modes on yield of ginger, nutrient efficiency and soil nitrate were carried out by field experiment. Four management modes were farmer convention mode, high yield and high efficiency mode, super high yield mode and super high yield and high efficiency mode, in which farmer convention mode was local farmers ’ conven-tional cropping methods, the other three management modes were optimized combi-nations of al management measures under a certain goal of increasing yield and efficiency. The results were as fol ows: ginger yield and nitrogen fertilizer efficiency under such three optimized management measures combinations as high yield and high efficiency mode, super high yield mode and super high yield and high efficien-cy mode were al higher than these of farmer convention mode, moreover, com-pared with farmer convention mode, the yield increased by 11.85%, 25.75% and 23.34%, respectively, and nitrogen fertilizer efficiency increased by 47.94%, 11.24%and 33.14%, respectively. Thereinto, the yield under super high yield mode were the greatest,and nitrogen fertilizer efficiency under high yield and high efficiency mode was the highest.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest from Ministry of Agriculture(200903025-05)Fund from Kunming Municipal Science and Technology Committee(08S010201)~~
文摘[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.
基金Supported by National Key Technology R&D Program(2006BAD05B06-04)Kunming Science and Technology Program(08S010201)~~
文摘[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.
基金the National Natural Science Foundation of China (U1301212)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15030202)
文摘Improving crop nutrient ef ficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements,among them,nitrogen(N) and phosphorus(P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity,and thereby have become high priority targets for improving nutrient ef ficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore,root architecture,the 3-dimensional con figuration of the plant's root system in the soil,is of great importance for improving crop nutrient ef ficiency. Furthermore,the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria,are additional important strategies to enhance nutrient acquisition. In this review,we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses,through gene or QTL regulation,which results in enhanced nutrient acquisition.
基金funding from the Ministry of Science and Technology Key R&D Program (2016YFD0100700)
文摘Increasing crop yields can provide food,animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency(primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
基金supported by the National Key Research and Development Program of China (No. 2016YFD0200102)the Fundamental Research Funds for the Central Universities of China (No. 2662016PY117)+1 种基金the Earmarked Fund for China Agriculture Research System (No. CARS-13)the Chinese National Project of Soil Testing and Fertilizer Recommendation
文摘Fertilization is essential for oilseed rape because it is sensitivity to nutrient deficiency, especially for winter oilseed rape(Brassica napus L.). To investigate regional nutrient efficiency and nutrient uptake-yield relationship of winter oilseed rape in an intensive cropping system, this study used data from 619 site-year on-farm experiments carried out in the winter oilseed rape planting area of the Yangtze River Basin, China from 2005 to 2010, with large yield in the range of 179–4 470 kg ha^(-1). Currently recommended application rates of N, P and K fertilizers increased rapeseed yield at different levels of soil indigenous nutrient supply(INS) in this region. Boundary values of plant nutrient uptake were established to analyze the nutrient uptake-yield relationship of winter oilseed rape(internal nutrient efficiency), i.e., 128 kg N ha^(-1), 24 kg P ha^(-1), and 122 kg K ha^(-1). The internal nutrient efficiency declined by 48.2%–64.1% when nutrient uptake exceeded the boundary value, resulting in excessive nutrient uptake(i.e., low yield response with high nutrient uptake), especially for K. In the intensive cropping system, agronomic efficiencies of N, P, and K were 5.9, 3.4, and3.6 kg kg^(-1), and recovery efficiencies of N, P, and K were 35.6%, 24.1%, and 36.8%, respectively. These findings showed that the fertilization rate should be optimized by considering INS, nutrient status, and nutrient efficiency of winter oilseed rape. In this study,considering the lower yield improvement to high K uptake levels and low K fertilizer efficiency, application rate of K fertilizer should be reduced since soil K deficiency has already been mitigated.
基金Project supported by the International Fertilizer Industry Association (IFI), France the Potash & Phos-phate Institute (PPI), USA and Canadathe International Potassium Institute (IPI), Switzerland.
文摘Potassium is one of the most important nutrients for rice production in many areas of Asia, especially in southeast China where potassium deficiency in soil is a widespread problem. Field experiments were conducted for four consecutive years in Jinhua City, Zhejiang Province, to determine utilization of nutrients (N, P and K) by inbred and hybrid rice and rice grain yields as affected by application of potassium fertilizer under irrigated conditions. Grain yield and nutrient harvest index showed a significant response to the NPK treatment as compared to the NP treatment. This suggested that potassium improved transfer of nitrogen and phosphorus from stems and leaves to panicles in rice plants. N and P use efficiencies of rice were not strongly responsive to potassium, but K use efficiency decreased significantly despite the fact that the amount of total K uptake increased. A significant difference between varieties was also observed with respect to nutrient uptake and use efficiency. Hybrid rice exhibited physiological advantage in N and P uptake and use efficiency over inbred rice. Analysis of annual dynamic change of exchangeable K and non-exchangeable K in the test soil indicated that non-exchangeable K was an important K source for rice. Potassium application caused an annual decrease in the concentration of available K in the soil tested, whereas an increase was observed in non-exchangeable K. It could be concluded that K fertilizer application at the rate of 100 kg ha-1 per season was not high enough to match K output, and efficient K management for rice must be based on the K input/output balance.
基金Under the auspices of Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-421)National Natural Science Foundation of China (No.40925003)
文摘Agricultural land use and management practices may affect soil properties,which play a critical role in sustaining crop production.Since the late 1970s,several new agricultural land use types had been introduced in the rural areas of China.The purpose of this study is to evaluate the effect of these land use changes on the soil properties,nu-trient absorption rate,and nutrient use economic efficiency ratio in an agricultural area of Beijing.Specifically,the cropland,the orchard and the vegetable field were examined.Results of this study suggest that land use and farming management practices significantly affect the content of soil organic carbon (SOC),total nitrogen (TN),total phos-phorus (TP),and available phosphorus in the surface layer of 0-25 cm (p<0.05) in the Yanqing Basin,northwestern Beijing.Soil nutrients in each agricultural land use type decrease rapidly with the increasing soil depth.Orchard and vegetable field tend to have higher soil nutrients than the cropland does.However,the soil nutrient-absorption rate (NAR) of the orchard and vegetable field is lower than that of the cropland,even though orchard and vegetable field may provide much higher economic benefit.While increasing SOC,TN,and TP in the orchard and vegetable field by intensive farming may be a valuable option to improve soil quality,potential increase in the risk of nutrient loss,or agricultural non-point source pollution can be a tradeoff if the intensive practices are not managed appropriately.
基金This research was supported by the National Natural Science Foundation of China(41807335)the Shandong Provincial Natural Science Foundation,China(ZR2020MC040)+2 种基金the National Key Technology Research and Development Program of China(2019YFC0507602-2)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020434)the National Postdoctoral Program for Innovative Talents(BX201700279).
文摘Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.
基金the Bill & Melinda Gates Foundation (BMGF) for providing a research grant to Z.L.for the Green Super Rice project under ID OPP1130530the Department of Agriculture of the Philippines for providing funds to J.A.under the Next-Gen project.
文摘The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.
文摘The primary challenge of mineland revegetation is the establishment of species able to cope with low availability of nutrients,especially in steep slopes such as of mine pits.We evaluated plant growth response and nutrient use efficiency(NUE)of two promising native Fabaceae species(Dioclea apurensis—liana from metalliferous savannas;Bauhinia longipedicellata—tree from Amazon rainforest)from the Caraja´s Mineral Province,eastern Amazon-Brazil.Plants were grown separately in 2-kg pots filled with mining waste.Substrates were fertilized with nitrogen,phosphorus,potassium(NPK),lime,and micronutrients.The results showed increments on growth of both species when nutrients were applied to the mining waste.D.apurensis showed increases in leaf area,plant height,stem diameter,and shoot dry mass production when NPK or NPK?micronutrients were applied,while B.longipedicelata was responsive to application of NPK?lime or NPK?lime?micronutrients.Further,D.apurensis showed higher NUE than B.longipedicelata,especially at the lowest doses of N,P and K.These findings may indicate a substantial advantage of D.apurensis for mineland revegetation,as this species may require lower nutrient inputs,being,therefore,a more sustainable way to revegetate degraded areas.
文摘Safflower represents an important oil crop internationally and may have a production potential under low input conditions, but its putatively high phosphorous use efficiency is not sustained. This study aims to directly compare safflower with sunflower in terms of phosphorus use efficiency in nutrient solution under controlled conditions. Growth of both species responded strongly to increasing P supply. Safflower recovers less proportion of added P than sunflower. External P requirement ((g P supply (100 g dry matter (DM) produced)~) was higher in safflower than sunflower. The efficiency of the crops for DM production based on accumulated P (mg P potl, efficiency ratio), and P concentration in DM ((mg P (g DM)'I), utilization index) were interpreted using Michaelis-Menten kinetics as growth response curves. Accordingly, Km constant was lower in sunflower compared to safflower in terms of utilization index, but both were similar in terms of efficiency ratio. High Km constant in safflower in terms of utilization index indicates the high P concentration in tissues to produce 50% of potential maximum DM, consequently less efficient crop. Utilization efficiency contributed more than uptake efficiency in overall PUE in the efficient cultivar and could be the cause of its superiority in PUE. It can be concluded that safflower has a high requirement for P with respect to growth, sunflower is more efficient in terms of uptake and utilization of P at optimal and sub-optimal P supplies indicating that safflower can not be considered a low nutrient input crop compared to sunflower with respect to phosphorus.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
基金the project "Cash Crops Research Network of China" of the Center for Resources, Environment and Food Security, China Agricultural UniversityProfessor Oene Oenema from Alterra Wageningnen University, the Netherlands, for his financial support of the research
文摘China is in a dominant position in apple production globally with both the largest apple growing area and the largest export of fresh apple fruits. However, the annual productivity of China's apple is significantly lower than that of other dominant apple producing countries. In addition, apple production is based on excessive application of chemical fertilizers and the nutrient use efficiency (especially nitrogen) is therefore low and the nutrient emissions to the environment are high. Apple production in China is considerably contributes to farmers' incomes and is important as export product. There is an urgent need to enhance apple productivity and improve nutrient use efficiencies in intensive apple production systems in the country. These can be attained by improved understanding of production potential, yield gaps, nutrient use and best management in apple orchards. To the end, priorities in research on apple production systems and required political support are described which may lead to more sustainable and environmental-friendly intensification of apple production in China.
基金supported by the National Key Research and Development Program of China (2016YFD0100706)the National Transgenic Key Project from the Ministry of Agriculture of China (2016ZX08002-005)
文摘The success of the Green Revolution largely relies on fertilizers, and a new Green Revolution is very much needed to use fertilizers more economically and efficiently, as well as with more environmental responsibility. The use efficiency of nitrogen, phosphorus, and potassium is controlled by complex gene networks that co-ordinate uptake, re-distribution, assimilation, and storage of these nutrients. Great progress has been made in breeding nutrient-efficient crops by molecularly engineering root traits desirable for efficient acquisition of nutrients from soil, transporters for uptake, redistribution and homeostasis of nutrients, and enzymes for efficient assimilation. Regulatory and transcription factors modulating these processes are also valuable in breeding crops with improved nutrient use efficiency and yield performance.
基金the financial support of the National Key Research and Development Program of China (2016YFD0300109 and 2018YFD0200703)the National Natural Science Foundation of China (31771709)+2 种基金the Jiangsu Agricultural Industry Technology System of China (JATS[2019]458)the High-end Talent Support Program of Yangzhou University, Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions, China。
文摘Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization. A two-year(2016 and 2017) field experiment was conducted with three plant densities(6.0, 7.5 and 9.0 plants m^-2) and three fertilization modes(no fertilizer, 0 F;one-off application of slow-released fertilizer, SF;twice application of conventional fertilizer, CF). Results indicated that the grain yields and N, P and K use efficiencies under SF with the optimal planting density(7.5 plants m^-2) were the highest among all the treatments in 2016 and 2017. Compared with CF, SF could increase post-silking dry matter accumulation and promote N, P and K uptake at pre-and post-silking stages;this treatment increased grain N, P and K concentrations and resulted in high N, P and K use efficiencies. Nutrient(N, P and K) absorption efficiencies and partial productivity, and nutrient(N and P) recovery efficiency in SF treatment were significantly higher than those in CF treatments under the planting density of 7.5 plants m^-2. Under both SF and CF conditions, the grain yield, total N accumulation and nutrient use efficiencies initially increased, peaked at planting density of 7.5 plants m^-2, and then decreased with increasing plant density. Based on the yield and nutrient use efficiency in two years, plant density of 7.5 plants m^-2 with SF can improve both the grain yield and N, P and K use efficiency of spring maize in Jiangsu Province, China.
基金supported by UGC-Special Assistance Programme by providing the financial assistance to one ofthe authors (NB Devi)
文摘Leaf litterfall,litter decomposition and nutrient return through litterfall of three dominant species,i.e.Quercus serrata,Schima wallichi and Lithocarpus dealbata were studied in different months throughout the year to assess the input and release of nutrient in the forest soil of a sub-tropical mixed oak forest of Manipur,northeastern India.Oaks in northeastern region of India are economically important species for the production of Tasar silk.The monthly litterfall ranged from 25.6 g·m^-2(July) to 198.0 g·m^-2(February) and annual litterfall was 1093.8g·m^-2 in the forest site.At initial month(on November 3),the concentrations of N and C were the highest in L.dealbata,followed by Q.serrata and lowest in S.wallichi,whereas lignin and cellulose concentrations at initial month were the highest in S.wallichi,followed by Q.serrata and L.dealbata.L.dealbata(k=0.54) exhibited a high rate of litter decomposition,coinciding with high concentrations of N and C and low cellulose in the litter at initial month.However,low rate of litter decomposition in S.wallichi(k=0.33) coincided with low value of N and C and highest value of lignin and cellulose at initial month.The remaining biomass in different months was positively correlated with the lignin,C,C/N ratio and cellulose,but it negatively correlated with nitrogen concentrations at initial month.The rate of litter decomposition was the highest in rainy summer months,owing to congenial environmental conditions and lowest rate of litter decomposition in cool and dry winter months.
基金supported by the National Key Research and Development Program of China(2018YFD0201001 and 2016YFD0200102)the Kansas Agricultural Experiment Station,USA(21-079-J)。
文摘Nutrient balance is essential for attaining high yield and improving profits in agricultural farming systems,and crop nutrient uptake ratio and stoichiometry can indicate crop nutrient limitations in the field.We collected a large amount of field data to study the variations in yield,nutrient uptake and nutrient stoichiometry of peanut(Arachis hypogaea L.)in Southeast China(SEC),North-central China(NCC),and Northeast China(NEC),during 1993 to 2018.Peanut pod yield gradually increased from 1993 to 2018,with average yields of 4148,5138,and 4635 kg ha–1 in SEC,NCC,and NEC,respectively.The nitrogen(N)internal efficiency(NIE,yield to N uptake ratio)was similar among the three regions,but phosphorus(P)IE(PIE,yield to P uptake ratio)changed from low to high among regions:NCC<SEC<NEC,while potassium(K)IE(KIE,yield to K uptake ratio)portrayed a different pattern of SEC<NCC<NEC.Based on the nutrient IE,to produce 1 Mg of pod yield,the average N,P,and K requirements of the above-ground parts of peanut were roughly 47.2,5.1,and 25.5 kg in SEC,44.8,5.7,and 20.6 kg in NCC,and 44.6,4.4,and 14.7 kg in NEC,respectively.The N/P ratio changed in the sequence NCC<SEC<NEC,and the N/K ratio was similar in NEC and NCC,but lower in SEC.The N harvest index(HI)and KHI declined with increasing nutrient uptake across all regions under high nutrient uptake.The low PIE and N/P ratios in NCC could be explained by the high P accumulation in stover,and high KIE and N/K ratios in NEC may be attributed to the low soil K supply.The frontier analysis approach provides a practical framework and allows documentation of a decline in nutrient HI as nutrient uptake increases.Lastly,this study reveals the limitation and surplus of nutrients of peanut in different regions of China.
基金supported by The University of Burdwan in the form of Ph.D.work(2011-12/2)
文摘We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha-1 a-1 for S. robusta to 11.03 ± 3.72 t ha-1 a-1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a-1) compared to S. robusta (2.41 ±0.30 a-1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P 〈 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P 〉 N 〉 K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N〉K^P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K 〉 P 〉 N) during decomposition of their leaf litter.Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.
基金This study was supported by National Natural Science Foundation of China (30270770) Foundation for Achievement Transfer (02EFN214301156) and PPI/PPIC-China Cooperation Project (HN-13).
文摘Development and use of controlled release fertilizer (CRF) in southern China, potential advantages of CRF in increasing rice yield and nutrient use efficiency were introduced, as well as its role of minimizing rice field’s environmental contamination was discussed. Meanwhile, some suggestions were proposed.