期刊文献+
共找到3,877篇文章
< 1 2 194 >
每页显示 20 50 100
Structural failure analysis with CMS-based ground motion selection using innovative cost function and weight factors
1
作者 Delbaz Samadian Imrose B.Muhit Nashwan Dawood 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期899-918,共20页
The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spec... The selection and scaling of ground motion records is considered a primary and essential task in performing structural analysis and design.Conventional methods involve using ground motion models and a conditional spectrum to select ground motion records based on the target spectrum.This research demonstrates the influence of adopting different weighted factors for various period ranges during matching selected ground motions with the target hazard spectrum.The event data from the Next Generation Attenuation West 2(NGA-West 2)database is used as the basis for ground motion selection,and hazard de-aggregation is conducted to estimate the event parameters of interest,which are then used to construct the target intensity measure(IM).The target IMs are then used to select ground motion records with different weighted vector-valued objective functions.The weights are altered to account for the relative importance of IM in accordance with the structural analysis application of steel moment resisting frame(SMRF)buildings.Instead of an ordinary objective function for the matching spectrum,a novel model is introduced and compared with the conventional cost function.The results indicate that when applying the new cost function for ground motion selection,it places higher demands on structures compared to the conventional cost function.Moreover,submitting more weights to the first-mode period of structures increases engineering demand parameters.Findings demonstrate that weight factors allocated to different period ranges can successfully account for period elongation and higher mode effects. 展开更多
关键词 weighted objective function ground motion selection steel moment resisting frame hazard analysis
下载PDF
Distributed Stochastic Optimization with Compression for Non-Strongly Convex Objectives
2
作者 Xuanjie Li Yuedong Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期459-481,共23页
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p... We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios. 展开更多
关键词 Distributed stochastic optimization arbitrary compression fidelity non-strongly convex objective function
下载PDF
OPTIMALITY CONDITIONS AND DUALITY RESULTS FOR NONSMOOTH VECTOR OPTIMIZATION PROBLEMS WITH THE MULTIPLE INTERVAL-VALUED OBJECTIVE FUNCTION 被引量:4
3
作者 Tadeusz ANTCZAK 《Acta Mathematica Scientia》 SCIE CSCD 2017年第4期1133-1150,共18页
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult... In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex. 展开更多
关键词 nonsmooth multiobjective programming problem with the multiple interval- objective function Fritz John necessary optimality conditions Karush-Kuhn- Tucker necessary optimality conditions (weakly) LU-efficient solution Mond- Weir duality
下载PDF
Well production optimization using streamline features-based objective function and Bayesian adaptive direct search algorithm 被引量:2
4
作者 Qi-Hong Feng Shan-Shan Li +2 位作者 Xian-Min Zhang Xiao-Fei Gao Ji-Hui Ni 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2879-2894,共16页
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T... Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development. 展开更多
关键词 Well production Optimization efficiency Streamline simulation Streamline feature objective function Bayesian adaptive direct search algorithm
下载PDF
Reactor Network Synthesis Based on Instantaneous Objective Function Characteristic Curves 被引量:2
5
作者 张治山 赵文 +2 位作者 王艳丽 周传光 袁希钢 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第4期436-440,共5页
It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions... It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions (steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper, the instantaneous objective function is closed to be the instantaneous selectivity and several samples are examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space. 展开更多
关键词 reactor network synthesis instantaneous objective function PARTITION
下载PDF
SELECTION OF OBJECTIVE FUNCTIONS AND APPLICATION OF GENETIC ALGORITHMS IN DAMPING DESIGN OF PIPE SYSTEM 被引量:1
6
作者 ChenYanqiu FanQinsban ZhuZigen 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期171-178,共8页
The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functio... The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functions for the vibration design of a pipeline or pipe system are introduced,namely,the frequency,amplitude,transfer ratio,curvature and deformation energy as options for the optimization process.The genetic algorithms(GA)are adopted as the opti- mization method,in which the selection of the adaptive genetic operators and the method of implementation of the GA process are crucial.The optimization procedure for all the above ob- jective functions is carried out using GA on the basis of finite element software-MSC/NASTRAN. The optimal solutions of these functions and the stress distribution on the structure are calculated and compared through an example,and their characteristics are analyzed.Finally we put forward two new objective functions,curvature and deformation energy for pipe system optimization.The calculations show that using the curvature as the objective function can reflect the case of minimal stress,and the optimization results using the deformation energy represent lesser and more uni- form stress distribution.The calculation results and process showed that the genetic algorithms can effectively implement damping design of engine pipelines and satisfy the efficient engineering design requirement. 展开更多
关键词 objective function genetic algorithms OPTIMIZATION pipe system
下载PDF
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark 被引量:3
7
作者 王陆 李柠 李少远 《自动化学报》 EI CSCD 北大核心 2013年第5期542-547,共6页
关键词 预测控制系统 性能监控 数据驱动 子空间 历史 基准 监视控制器 目标函数
下载PDF
FUZZY IDENTIFICATION METHOD BASED ON A NEW OBJECTIVE FUNCTION
8
作者 王宏伟 贺汉根 黄柯棣 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第3期162-166,共5页
A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the sys... A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non linear systems and obviously improve modeling accuracy. 展开更多
关键词 objective function fuzzy clustering fuzzy identification non linear systems
下载PDF
Experimental Evaluation of Objective Functions for Well-balanced Mapping
9
作者 Chen Delai Xu Hong Zhou Ying and Zhang Defu(Department of Computer Science and Technology Nailing University, Naming 210093, P. R. China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期312-316,共5页
High performance of parallel computing on a message-passing multicomputer System relies on the balance of the workloads located on the processing elements of the System and the minimum communication ovcrheads among th... High performance of parallel computing on a message-passing multicomputer System relies on the balance of the workloads located on the processing elements of the System and the minimum communication ovcrheads among them. Mapping is the technology to partition the problem domain wellbalanced into multiple distinct execution tasks based on some measures. In mapping, a good objective function is the criterion to guarantce the distinct execution tasks equitable. In this paper, we evaluate five categories of those existed objective functions with three different problem subjects using experiments and find an objective function is much suitable for all kinds of problems. 展开更多
关键词 MAPPING Heuristic algorithm objective functions
下载PDF
Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models
10
作者 TIAN Fuqiang HU Hongchang +2 位作者 SUN Yu LI Hongyi LU Hui 《Chinese Geographical Science》 SCIE CSCD 2019年第6期934-948,共15页
In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies,... In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches.In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable(e.g., streamflow).Thus hydrologists must turn to multi-objective calibration.In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds.The new objective function was applied to 196 model parameter estimation experiment(MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model.The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively.Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration.The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed. 展开更多
关键词 automatic calibration single-objective function MULTI-objectIVE functions Xinanjiang MODEL HYDROLOGICAL MODEL
下载PDF
Randomized Objective Function Linear Programming in Risk Management
11
作者 Dennis Ridley Felipe Llaugel +1 位作者 Inger Daniels Abdullah Khan 《Journal of Applied Mathematics and Physics》 2021年第3期391-402,共12页
The traditional linear programming model is deterministic. The way that uncertainty is handled is to compute the range of optimality. After the optimal solution is obtained, typically by the simplex method, one consid... The traditional linear programming model is deterministic. The way that uncertainty is handled is to compute the range of optimality. After the optimal solution is obtained, typically by the simplex method, one considers the effect of varying each objective function coefficient, one at a time. This yields the range of optimality within which the decision variables remain constant. This sensitivity analysis is useful for helping the analyst get a sense for the problem. However, it is unrealistic because objective function coefficients tend not to stand still. They are typically profit contributions from products sold and are subject to randomly varying selling prices. In this paper, a realistic linear program is created for simultaneously randomizing the coefficients from any probability distribution. Furthermore, we present a novel approach for designing a copula of random objective function coefficients according to a specified rank correlation. The corresponding distribution of objective function values is created. This distribution is examined directly for central tendency, spread, skewness and extreme values for the purpose of risk analysis. This enables risk analysis and business analytics, emerging topics in education and preparation for the knowledge economy. 展开更多
关键词 Linear Programming RANDOM objective function Profit Distribution RISK Monte Carlo Simulation
下载PDF
Adaptive Learning Rate Optimization BP Algorithm with Logarithmic Objective Function
12
作者 李春雨 盛昭瀚 《Journal of Southeast University(English Edition)》 EI CAS 1997年第1期47-51,共5页
This paper presents an improved BP algorithm. The approach can reduce the amount of computation by using the logarithmic objective function. The learning rate μ(k) per iteration is determined by dynamic o... This paper presents an improved BP algorithm. The approach can reduce the amount of computation by using the logarithmic objective function. The learning rate μ(k) per iteration is determined by dynamic optimization method to accelerate the convergence rate. Since the determination of the learning rate in the proposed BP algorithm only uses the obtained first order derivatives in standard BP algorithm(SBP), the scale of computational and storage burden is like that of SBP algorithm,and the convergence rate is remarkably accelerated. Computer simulations demonstrate the effectiveness of the proposed algorithm 展开更多
关键词 BP ALGORITHM ADAPTIVE LEARNING RATE optimization fault diagnosis logarithmic objective function
下载PDF
A New Augmented Lagrangian Objective Penalty Function for Constrained Optimization Problems
13
作者 Ying Zheng Zhiqing Meng 《Open Journal of Optimization》 2017年第2期39-46,共8页
In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization prob... In this paper, a new augmented Lagrangian penalty function for constrained optimization problems is studied. The dual properties of the augmented Lagrangian objective penalty function for constrained optimization problems are proved. Under some conditions, the saddle point of the augmented Lagrangian objective penalty function satisfies the first-order Karush-Kuhn-Tucker (KKT) condition. Especially, when the KKT condition holds for convex programming its saddle point exists. Based on the augmented Lagrangian objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions. 展开更多
关键词 CONSTRAINED Optimization Problems AUGMENTED LAGRANGIAN objective PENALTY function SADDLE POINT Algorithm
下载PDF
A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming
14
作者 Zhiqing Meng Rui Shen Min Jiang 《American Journal of Operations Research》 2014年第6期331-339,共9页
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu... In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP. 展开更多
关键词 MULTI-objectIVE Programming PENALTY function objective PARAMETERS CONSTRAINT PENALTY Parameter PARETO Weakly-Efficient Solution
下载PDF
An Objective Penalty Functions Algorithm for Multiobjective Optimization Problem
15
作者 Zhiqing Meng Rui Shen Min Jiang 《American Journal of Operations Research》 2011年第4期229-235,共7页
By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single obj... By using the penalty function method with objective parameters, the paper presents an interactive algorithm to solve the inequality constrained multi-objective programming (MP). The MP is transformed into a single objective optimal problem (SOOP) with inequality constrains;and it is proved that, under some conditions, an optimal solution to SOOP is a Pareto efficient solution to MP. Then, an interactive algorithm of MP is designed accordingly. Numerical examples show that the algorithm can find a satisfactory solution to MP with objective weight value adjusted by decision maker. 展开更多
关键词 MULTIobjectIVE Optimization Problem objective PENALTY function PARETO Efficient Solution INTERACTIVE ALGORITHM
下载PDF
结合Cokriging模型和单目标函数的随机模型修正 被引量:1
16
作者 彭珍瑞 张雪萍 张亚峰 《机械科学与技术》 CSCD 北大核心 2024年第1期1-8,共8页
将Cokriging代理模型技术和单目标函数进行结合,提出了一种随机模型修正方法。该方法将不确定性模型修正问题转化为较简单的待修正参数统计特征的修正问题,能够在保证模型修正精度的同时,有效缓解模型修正中由于分步修正和多目标修正造... 将Cokriging代理模型技术和单目标函数进行结合,提出了一种随机模型修正方法。该方法将不确定性模型修正问题转化为较简单的待修正参数统计特征的修正问题,能够在保证模型修正精度的同时,有效缓解模型修正中由于分步修正和多目标修正造成的计算成本高的问题。首先,假设待修正参数和响应均服从高斯分布,采用拉丁超立方抽样获取训练集样本,构造满足精度要求的Cokriging模型替代复杂的有限元模型参与迭代计算。然后,建立有限元模型计算响应统计特征与试验响应统计特征的加权残差目标函数,引入土狼优化算法最小化该单目标函数来得到待修正参数的统计特征。最后,通过二维和三维桁架结构验证了所提方法的可行性。 展开更多
关键词 不确定性 模型修正 单目标函数 全局优化 Cokriging模型
下载PDF
基于改进YOLOv5s的小目标检测算法 被引量:7
17
作者 贵向泉 秦庆松 孔令旺 《计算机工程与设计》 北大核心 2024年第4期1134-1140,共7页
针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目... 针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目标的检测精度;在Neck结构中,通过优化上采样算子和添加注意力机制,加强小目标的特征信息。实验结果表明,改进后的算法在VisDrone数据集上与YOLOv5s算法相比,mAP@small提高了3.2%,且检测速度满足实时性的要求,能够很好地应用于小目标检测任务中。 展开更多
关键词 YOLOv5s算法 小目标检测 损失函数 上采样算子 骨干网络 注意力机制 特征信息
下载PDF
基于GA-SA组合算法的山区复杂环境无人机起降点选址 被引量:1
18
作者 李章萍 贺亚蒙 《科学技术与工程》 北大核心 2024年第2期850-857,共8页
针对山区复杂环境下的物流链前端无人机货运起降点选址和任务分配进行研究。首先以建设成本最小和运输时间满意度最大为目标,综合考虑无人机自身性能和禁飞空域等因素,构建多约束条件下多目标函数的起降点选址和任务分配模型。采用遗传... 针对山区复杂环境下的物流链前端无人机货运起降点选址和任务分配进行研究。首先以建设成本最小和运输时间满意度最大为目标,综合考虑无人机自身性能和禁飞空域等因素,构建多约束条件下多目标函数的起降点选址和任务分配模型。采用遗传算法(genetic algorithm, GA)和模拟退火算法(simulated annealing algorithm, SA)的组合算法进行求解,首先通过遗传算法得出较优的可行解,再以此解作为退火算法的初始解进行模型求解。仿真结果表明,构建的多约束模型能够实现预期效果,并且采用的算法解决此类问题时具有良好的适用性。 展开更多
关键词 无人机货运 多约束条件 多目标函数 起降点选址 组合算法
下载PDF
VECTOR WAVE FUNCTION EXPANSION FOR SOLVING ELECTROMAGNETIC SCATTERING BY BURIED OBJECTS
19
作者 陈景养 徐鹏根 鲁述 《Journal of Electronics(China)》 1991年第3期239-246,共8页
An analysis of solving the electromagnetic scattering by buried objects using vectorwave function expansion is presented.For expanding the boundary conditions both on the planarair-earth interface and on the spherical... An analysis of solving the electromagnetic scattering by buried objects using vectorwave function expansion is presented.For expanding the boundary conditions both on the planarair-earth interface and on the spherical surface,the conversion relations between the cylindricaland spherical vector wave functions are derived.Hence the vector wave function expansion isconveniently applied to solve this complex boundary-value problem.For the excitation of the in-cident plane wave and the dipole above the earth,the scatterlng patterns of the buried conductingand dielectric spheres are presented and discussed. 展开更多
关键词 Electromagnetic scattering BURIED objects Boundary condition VECTOR WAVE function EXPANSION WAVE transformation
下载PDF
Object-Oriented Modeling of the Variation of Acceleration and Deceleration Characteristics in Relation to Speed Bands for Railway Vehicles
20
作者 Hyun-Soo Jeong Jong-Young Park Hanmin Lee 《Energy and Power Engineering》 2023年第8期277-290,共14页
Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this stu... Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry. 展开更多
关键词 Railway Vehicle ATO Lunge-Kutta Method object-Oriented Model function Overloading
下载PDF
上一页 1 2 194 下一页 到第
使用帮助 返回顶部