Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (...Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.展开更多
Laser-induced breakdown spectroscopy (LIBS) has become a powerful technology in geological applications. The correct identification of rocks and soils is critical to many geological projects. In this study, LIBS dat...Laser-induced breakdown spectroscopy (LIBS) has become a powerful technology in geological applications. The correct identification of rocks and soils is critical to many geological projects. In this study, LIBS database software with a user-friendly and intuitive interface is developed based on Windows, consisting of a database module and a sample identification module. The database module includes a basic database containing LIBS persistent lines for elements and a dedicated geological database containing LIBS emission lines for several rock and soil reference standards. The module allows easy use of the data. A sample identification module based on partial least squares discriminant analysis (PLS-DA) or support vector machine (SVM) algorithms enables users to classify groups of unknown spectra. The developed system was used to classify rock and soil data sets in a dedicated database and the results demonstrate that the system is capable of fast and accurate classification of rocks and soils, and is thus useful for the detection of geological materials.展开更多
Time series classification is related to many dif- ferent domains, such as health informatics, finance, and bioinformatics. Due to its broad applications, researchers have developed many algorithms for this kind of ta...Time series classification is related to many dif- ferent domains, such as health informatics, finance, and bioinformatics. Due to its broad applications, researchers have developed many algorithms for this kind of tasks, e.g., multivariate time series classification. Among the classifi- cation algorithms, k-nearest neighbor (k-NN) classification (particularly 1-NN) combined with dynamic time warping (DTW) achieves the state of the art performance. The defi- ciency is that when the data set grows large, the time con- sumption of 1-NN with DTW will be very expensive. In con- trast to 1-NN with DTW, it is more efficient but less ef- fective for feature-based classification methods since their performance usually depends on the quality of hand-crafted features. In this paper, we aim to improve the performance of traditional feature-based approaches through the feature learning techniques. Specifically, we propose a novel deep learning framework, multi-channels deep convolutional neu- ral networks (MC-DCNN), for multivariate time series classi- fication. This model first learns features from individual uni- variate time series in each channel, and combines information from all channels as feature representation at the final layer. Then, the learnt features are applied into a multilayer percep- tron (MLP) for classification. Finally, the extensive experi- ments on real-world data sets show that our model is not only more efficient than the state of the art but also competitive in accuracy. This study implies that feature learning is worth to be investigated for the problem of time series classification.展开更多
高光谱图像数据体现为波段多、地物标签获取困难大、谱信息抗干扰能力弱等特征,容易引起维数灾难、光谱空间变异性等问题,从而影响分类器的分类精度。针对这些问题,本文将负相似信息引入到拉普拉斯支持向量机(Laplacian Support Vector ...高光谱图像数据体现为波段多、地物标签获取困难大、谱信息抗干扰能力弱等特征,容易引起维数灾难、光谱空间变异性等问题,从而影响分类器的分类精度。针对这些问题,本文将负相似信息引入到拉普拉斯支持向量机(Laplacian Support Vector Machine,Lap SVM)的流形正则化项中,提出了一种引入负相似的拉普拉斯支持向量机(Dissimilarity in Laplacian Support Vector Machine,Diss-Lap SVM)分类算法,抑制光谱空间变异对分类结果的影响。同时,本文提出利用线性近邻传播(Linear Neighborhood Propagation,LNP)算法构造图的拉普拉斯矩阵,更有效地引入无标签样本的信息。实验结果表明,本文算法的分类精度得到了提高,特别是对光谱特征相似的地物。展开更多
基金supported by the National Natural Science Foundation of China(6100118741001256+1 种基金40971219)the National High Technology Research and Development Program of China(863 Program)(2013 AA122301)
文摘Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.
基金supported by National Major Scientific Instruments and Equipment Development Special Funds,China(No.2011YQ030113)
文摘Laser-induced breakdown spectroscopy (LIBS) has become a powerful technology in geological applications. The correct identification of rocks and soils is critical to many geological projects. In this study, LIBS database software with a user-friendly and intuitive interface is developed based on Windows, consisting of a database module and a sample identification module. The database module includes a basic database containing LIBS persistent lines for elements and a dedicated geological database containing LIBS emission lines for several rock and soil reference standards. The module allows easy use of the data. A sample identification module based on partial least squares discriminant analysis (PLS-DA) or support vector machine (SVM) algorithms enables users to classify groups of unknown spectra. The developed system was used to classify rock and soil data sets in a dedicated database and the results demonstrate that the system is capable of fast and accurate classification of rocks and soils, and is thus useful for the detection of geological materials.
文摘Time series classification is related to many dif- ferent domains, such as health informatics, finance, and bioinformatics. Due to its broad applications, researchers have developed many algorithms for this kind of tasks, e.g., multivariate time series classification. Among the classifi- cation algorithms, k-nearest neighbor (k-NN) classification (particularly 1-NN) combined with dynamic time warping (DTW) achieves the state of the art performance. The defi- ciency is that when the data set grows large, the time con- sumption of 1-NN with DTW will be very expensive. In con- trast to 1-NN with DTW, it is more efficient but less ef- fective for feature-based classification methods since their performance usually depends on the quality of hand-crafted features. In this paper, we aim to improve the performance of traditional feature-based approaches through the feature learning techniques. Specifically, we propose a novel deep learning framework, multi-channels deep convolutional neu- ral networks (MC-DCNN), for multivariate time series classi- fication. This model first learns features from individual uni- variate time series in each channel, and combines information from all channels as feature representation at the final layer. Then, the learnt features are applied into a multilayer percep- tron (MLP) for classification. Finally, the extensive experi- ments on real-world data sets show that our model is not only more efficient than the state of the art but also competitive in accuracy. This study implies that feature learning is worth to be investigated for the problem of time series classification.
文摘高光谱图像数据体现为波段多、地物标签获取困难大、谱信息抗干扰能力弱等特征,容易引起维数灾难、光谱空间变异性等问题,从而影响分类器的分类精度。针对这些问题,本文将负相似信息引入到拉普拉斯支持向量机(Laplacian Support Vector Machine,Lap SVM)的流形正则化项中,提出了一种引入负相似的拉普拉斯支持向量机(Dissimilarity in Laplacian Support Vector Machine,Diss-Lap SVM)分类算法,抑制光谱空间变异对分类结果的影响。同时,本文提出利用线性近邻传播(Linear Neighborhood Propagation,LNP)算法构造图的拉普拉斯矩阵,更有效地引入无标签样本的信息。实验结果表明,本文算法的分类精度得到了提高,特别是对光谱特征相似的地物。