This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well ...This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.展开更多
The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbati...The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbation in North Atlantic (NA) has become one of the hot topics in the recent years. In this study, the mechanism and pathway of meridional ocean heat transport (OHT) under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model. The results show that the anomalous OHT in the freshwater experiment (FW) is dominated by the meridional circulation kinetic and ocean thermal processes. In the FW, OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents. Conversely, OHT recovers as the AMOC recovers, and the mechanism can be generalized as: 1) increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA; 2) the OttT from the Southern Ocean enters the NA through the equator along the deep Ekman layer; 3) in NA, the recovery of OHT appears mainly along the isopycnic layers of 24.70- 25.77 below the mixing layer. It is then transported into the mixing layer from the "outcropping points" in northern high latitudes, and finally released to the atmosphere by the ocean-atmosphere heat exchange.展开更多
The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profi...The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.展开更多
Paleo reconstructions and model simulations have suggested the Bering Strait plays a pivotal role in climate change. However, the contribution of the Bering Strait throughflow to oceanic meridional heat transport (OMH...Paleo reconstructions and model simulations have suggested the Bering Strait plays a pivotal role in climate change. However, the contribution of the Bering Strait throughflow to oceanic meridional heat transport (OMHT) is about 100 times smaller than the OMHT at low latitudes in the modern climate and it is generally ignored. Based on model simulations under modern and Last Glacial Maximum (LGM,~21 ka;ka=thousand years ago) climate conditions, this study highlights the importance of the Bering Strait throughflow to OMHT. The interbasin OMHT induced by the Bering Strait throughflow is estimated by interbasin-intrabasin decomposition. Similar to barotropic-baroclinic-horizontal decomposition, we assume the nonzero net mass transport induced by interbasin throughflows is uniform across the entire section, and the interbasin term is separated to force zero net mass transport for the intrabasin term. Based on interbasinintrabasin decomposition, the contribution of the Bering Strait throughflow is determined as ~0.02 PW (1 PW=10 15 W) under the modern climate, and zero under the LGM climate because the closed Bering Strait blocked interbasin throughflows. The contribution of the Bering Strait throughflow to OMHT is rather small, consistent with previous studies. However, comparisons of OMHT under modern and LGM climate conditions indicate the mean absolute changes are typically 0.05 and 0.20 PWin the North Atlantic and North Pacific, respectively. Thus, the contribution of the Bering Strait throughflow should not be ignored when comparing OMHT under diff erent climate conditions.展开更多
The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the oc...The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the ocean loses heat to the atmosphere,affecting the AMOC(Atlantic Meridional Overturning Circulation)variability and hence the global climate.However,the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations.In order to explain the discrepancy of the surface heat flux over the North Atlantic,datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC(Diagnosing Earth's Energy Pathways in the Climate system)product.As an indirect check of the ocean surface heat flux,the oceanic heat transport inferred from the combination of the ocean surface heat flux,sea ice,and ocean heat content tendency is compared with the RAPID(Rapid Climate Change-Meridional Overturning Circulation and Heat flux array)observations at 26°N in the Atlantic.The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere.The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about10 W m–2 less than DEEPC,and the heat transport is about 0.30 PW(1 PW=1015 W)lower than RAPID and DEEPC.The model horizontal resolution effect on the discrepancy is also investigated.Results show that by increasing the resolution,both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.展开更多
Although atmospheric greenhouse gas concentrations continuously increased, there was relatively little change in global-averaged surface temperatures from 1998 to 2013, which is known as atmospheric warming slowdown. ...Although atmospheric greenhouse gas concentrations continuously increased, there was relatively little change in global-averaged surface temperatures from 1998 to 2013, which is known as atmospheric warming slowdown. For further understanding the mechanism involved, we explored the energy redistribution between the atmosphere and ocean in different latitudes and depths by using data analysis as well as simulations of a coupled atmosphere–ocean box model. The results revealed that, compared with observational changes of ocean heat content (OHC) associated with rapid warming, the OHC changes related to warming slowdown are relatively larger in multiple ocean basins, particularly in the deeper layer of the Atlantic. The coupled box model also showed that there is a larger increasing trend of OHC under the warming slowdown scenario than the rapid warming scenario. Particularly, during the warming slowdown period, the heat storage in the deeper ocean increases faster than the ocean heat uptake in the surface ocean. The simulations indicated that the warming patterns under the two scenarios are accompanied by distinct outgoing longwave radiation and atmospheric meridional heat transport, as well as other related processes, thus leading to different characteristics of ocean heat uptake. Due to the global energy balance, we suggest this slowdown has a tight relationship with the accelerated heat transport into the global ocean.展开更多
The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1400-year spin up results of the MOM4p 1. The spin up starts from a state of...The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1400-year spin up results of the MOM4p 1. The spin up starts from a state of rest, driven by the monthly climatological mean force from the NOAAWorld Ocean Atlas (1994). The volume transport sketch reveals the northward transport throughout the Pacific and southward transport at all latitudes in the Atlantic. The annual mean strength of the Pacific-Arctic-Atlantic through flow is 0.63x106 m3/s in the Bering Strait. The majority of the northward volume transport in the southern Pacific turns into the Indonesian through flow (ITF) and joins the Indian Ocean equatorial current, which subse- quently flows out southward from the Mozambique Channel, with its majority superimposed on the Ant- arctic Circumpolar Current (ACC). This anti-cyclonic circulation around Australia has a strength of 11 x 106 ms /s according to the model-produced result. The atmospheric fresh water transport, known as P-E^R (pre- cipitation minus evaporation plus runoff), constructs a complement to the horizontal volume transport of the ocean. The annual mean heat transport sketch exhibits a northward heat transport in the Atlantic and poleward heat transport in the global ocean. The surface heat flux acts as a complement to the horizontal heat transport of the ocean. The climatological volume transports describe the most important features through the inter-basin passages and in the associated basins, including: the positive P-E+R in the Arctic substantially strengthening the East Greenland Current in summer; semiannual variability of the volume transport in the Drake Passage and the southern Atlantic-Indian Ocean passage; and annual transport vari- ability of the ITF intensifying in the boreal summer. The climatological heat transports show heat storage in July and heat deficit in January in the Arctic; heat storage in January and heat deficit in July in the Antarctic circumpolar current regime (ACCR); and intensified heat transport of the iTF in July. The volume transport of the ITF is synchronous with the volume transport through the southern Indo-Pacific sections, but the year-long southward heat transport of the ITF is out of phase with the heat transport through the equatorial Pacific, which is northward before May and southward after May. This clarifies the majority of the ITF origi- natinR from the southern Pacific Ocean.展开更多
Dramatic changes in the sea ice characteristics in the Barents Sea have potential consequences for the weather and climate systems of mid-latitude continents,Arctic ecosystems,and fisheries,as well as Arctic maritime ...Dramatic changes in the sea ice characteristics in the Barents Sea have potential consequences for the weather and climate systems of mid-latitude continents,Arctic ecosystems,and fisheries,as well as Arctic maritime navigation.Simulations and projections of winter sea ice in the Barents Sea based on the latest 41 climate models from the Coupled Model Intercomparison Project Phase 6(CMIP6)are investigated in this study.Results show that most CMIP6 models overestimate winter sea ice in the Barents Sea and underestimate its decreasing trend.The discrepancy is mainly attributed to the simulation bias towards an overly weak ocean heat transport through the Barents Sea Opening and the underestimation of its increasing trend.The methods of observation-based model selection and emergent constraint were used to project future winter sea ice changes in the Barents Sea.Projections indicate that sea ice in the Barents Sea will continue to decline in a warming climate and that a winter ice-free Barents Sea will occur for the first time during 2042-2089 under the Shared Socioeconomic Pathway 585(SSP5-8.5).Even in the observation-based selected models,the sensitivity of winter sea ice in the Barents Sea to global warming is weaker than observed,indicating that a winter ice-free Barents Sea might occur earlier than projected by the CMIP6 simulations.展开更多
对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimila-tion),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate ...对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimila-tion),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)模拟的北印度洋经向环流及热输送的气候态。LICOM能抓住北印度洋大尺度环流的季节变化特征,模拟的年平均越赤道热输送为-0.24 PW(1 PW=1015W),较之以往的数值模式结果更接近观测和同化资料。与同化资料的差异主要体现在季节变化强度,北半球夏季在赤道以南偏弱0.5 PW,这与模式夏季的纬向风应力偏弱,热输送中的大项Ekman热输送模拟偏弱,从而模拟的经圈翻转环流较浅有关。展开更多
基金supported by the Frontier Research Center for Global Change and International Arctic Research Center,through JAMSTEC,JapanThe climate model was run on the Earth Simulator of JAMSTEC,Yokohama,Japan+1 种基金Constructive discussions with Drs.T.Matsuno,T.Tokioka and N.Suginohara of FRCGC/JAMSTEC andDr.A.Sumi of CCSR/UT are very much appreciatedJW also thanks NOAA Office of Arctic Research for partial support.This is GLERL Contribution No.1496.
文摘This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.
基金Supported by the National Basic Research Program of China(2009CB421401)Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Administration(GYHY200906018)+1 种基金Risk Assessment on Severe Meteorological and Hydrological Disasters(KZCX2-YW-Q03-3)National Natural Science Foundation of China(90711004)
文摘The Atlantic Meridional Overturning Circulation (AMOC) transports a large amount of heat to northern high latitudes, playing an important role in the global climate change. Investigation of the freshwater perturbation in North Atlantic (NA) has become one of the hot topics in the recent years. In this study, the mechanism and pathway of meridional ocean heat transport (OHT) under the enhanced freshwater input to the northern high latitudes in the Atlantic are investigated by an ocean-sea ice-atmosphere coupled model. The results show that the anomalous OHT in the freshwater experiment (FW) is dominated by the meridional circulation kinetic and ocean thermal processes. In the FW, OHT drops down during the period of weakened AMOC while the upper tropical ocean turns warmer due to the retained NA warm currents. Conversely, OHT recovers as the AMOC recovers, and the mechanism can be generalized as: 1) increased ocean heat content in the tropical Southern Ocean during the early integration provides the thermal condition for the recovery of OHT in NA; 2) the OttT from the Southern Ocean enters the NA through the equator along the deep Ekman layer; 3) in NA, the recovery of OHT appears mainly along the isopycnic layers of 24.70- 25.77 below the mixing layer. It is then transported into the mixing layer from the "outcropping points" in northern high latitudes, and finally released to the atmosphere by the ocean-atmosphere heat exchange.
基金The Major Program of the National Natural Science Foundation of China under contact No.40890153The National High Tech-nology Research and Development Program of China(863 Program)under contact No.2008AA09A402
文摘The Argo data are used to calculate eddy(turbulence) heat transport(EHT) in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v ′,T ′ profiles within each 2 ×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo "instantaneous" values respectively.Through the Student's t-test and an error evaluation,we obtained a total of 87% Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC) and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT) of the global ocean reaches 0.12 PW in the northern WBC band and –0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and 45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC) region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.
基金Supported by the China’s National Key Research and Development Project(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
文摘Paleo reconstructions and model simulations have suggested the Bering Strait plays a pivotal role in climate change. However, the contribution of the Bering Strait throughflow to oceanic meridional heat transport (OMHT) is about 100 times smaller than the OMHT at low latitudes in the modern climate and it is generally ignored. Based on model simulations under modern and Last Glacial Maximum (LGM,~21 ka;ka=thousand years ago) climate conditions, this study highlights the importance of the Bering Strait throughflow to OMHT. The interbasin OMHT induced by the Bering Strait throughflow is estimated by interbasin-intrabasin decomposition. Similar to barotropic-baroclinic-horizontal decomposition, we assume the nonzero net mass transport induced by interbasin throughflows is uniform across the entire section, and the interbasin term is separated to force zero net mass transport for the intrabasin term. Based on interbasinintrabasin decomposition, the contribution of the Bering Strait throughflow is determined as ~0.02 PW (1 PW=10 15 W) under the modern climate, and zero under the LGM climate because the closed Bering Strait blocked interbasin throughflows. The contribution of the Bering Strait throughflow to OMHT is rather small, consistent with previous studies. However, comparisons of OMHT under modern and LGM climate conditions indicate the mean absolute changes are typically 0.05 and 0.20 PWin the North Atlantic and North Pacific, respectively. Thus, the contribution of the Bering Strait throughflow should not be ignored when comparing OMHT under diff erent climate conditions.
基金supported by the National Natural Science Foundation of China(Grant No.42075036)Fujian Key Laboratory of Severe Weather(Grant No.2021KFKT02)+2 种基金the scientific research start-up grant of Guangdong Ocean University(Grant No.R20001)supported by the University of Reading as a visiting fellowsupported by the UK National Centre for Earth Observation Grant No.NE/RO16518/1。
文摘The change in ocean net surface heat flux plays an important role in the climate system.It is closely related to the ocean heat content change and ocean heat transport,particularly over the North Atlantic,where the ocean loses heat to the atmosphere,affecting the AMOC(Atlantic Meridional Overturning Circulation)variability and hence the global climate.However,the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations.In order to explain the discrepancy of the surface heat flux over the North Atlantic,datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC(Diagnosing Earth's Energy Pathways in the Climate system)product.As an indirect check of the ocean surface heat flux,the oceanic heat transport inferred from the combination of the ocean surface heat flux,sea ice,and ocean heat content tendency is compared with the RAPID(Rapid Climate Change-Meridional Overturning Circulation and Heat flux array)observations at 26°N in the Atlantic.The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere.The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about10 W m–2 less than DEEPC,and the heat transport is about 0.30 PW(1 PW=1015 W)lower than RAPID and DEEPC.The model horizontal resolution effect on the discrepancy is also investigated.Results show that by increasing the resolution,both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.
基金supported by the National Science Foundation of China (Grant Nos. 41521004, 41575006 and 41705047)the China 111 project (Grant No. B13045)the Foundation of the Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University from the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2017-bt04)
文摘Although atmospheric greenhouse gas concentrations continuously increased, there was relatively little change in global-averaged surface temperatures from 1998 to 2013, which is known as atmospheric warming slowdown. For further understanding the mechanism involved, we explored the energy redistribution between the atmosphere and ocean in different latitudes and depths by using data analysis as well as simulations of a coupled atmosphere–ocean box model. The results revealed that, compared with observational changes of ocean heat content (OHC) associated with rapid warming, the OHC changes related to warming slowdown are relatively larger in multiple ocean basins, particularly in the deeper layer of the Atlantic. The coupled box model also showed that there is a larger increasing trend of OHC under the warming slowdown scenario than the rapid warming scenario. Particularly, during the warming slowdown period, the heat storage in the deeper ocean increases faster than the ocean heat uptake in the surface ocean. The simulations indicated that the warming patterns under the two scenarios are accompanied by distinct outgoing longwave radiation and atmospheric meridional heat transport, as well as other related processes, thus leading to different characteristics of ocean heat uptake. Due to the global energy balance, we suggest this slowdown has a tight relationship with the accelerated heat transport into the global ocean.
基金The National Basic Research Program Grant of China under contract No.2011CB403502the National High Technology Research and Development Program(863 Program)under contract No.2013AA09A506+2 种基金the Global Change and Air-Sea Interaction Program under contract No.GASI-03-01-01-04the International Cooperation Program Grant of China under contract No.2010DFB23580author Guan Yuping is supported by the National Natural Science Foundation of China under contract Nos 40976011 and 91228202
文摘The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1400-year spin up results of the MOM4p 1. The spin up starts from a state of rest, driven by the monthly climatological mean force from the NOAAWorld Ocean Atlas (1994). The volume transport sketch reveals the northward transport throughout the Pacific and southward transport at all latitudes in the Atlantic. The annual mean strength of the Pacific-Arctic-Atlantic through flow is 0.63x106 m3/s in the Bering Strait. The majority of the northward volume transport in the southern Pacific turns into the Indonesian through flow (ITF) and joins the Indian Ocean equatorial current, which subse- quently flows out southward from the Mozambique Channel, with its majority superimposed on the Ant- arctic Circumpolar Current (ACC). This anti-cyclonic circulation around Australia has a strength of 11 x 106 ms /s according to the model-produced result. The atmospheric fresh water transport, known as P-E^R (pre- cipitation minus evaporation plus runoff), constructs a complement to the horizontal volume transport of the ocean. The annual mean heat transport sketch exhibits a northward heat transport in the Atlantic and poleward heat transport in the global ocean. The surface heat flux acts as a complement to the horizontal heat transport of the ocean. The climatological volume transports describe the most important features through the inter-basin passages and in the associated basins, including: the positive P-E+R in the Arctic substantially strengthening the East Greenland Current in summer; semiannual variability of the volume transport in the Drake Passage and the southern Atlantic-Indian Ocean passage; and annual transport vari- ability of the ITF intensifying in the boreal summer. The climatological heat transports show heat storage in July and heat deficit in January in the Arctic; heat storage in January and heat deficit in July in the Antarctic circumpolar current regime (ACCR); and intensified heat transport of the iTF in July. The volume transport of the ITF is synchronous with the volume transport through the southern Indo-Pacific sections, but the year-long southward heat transport of the ITF is out of phase with the heat transport through the equatorial Pacific, which is northward before May and southward after May. This clarifies the majority of the ITF origi- natinR from the southern Pacific Ocean.
基金the Chinese Natural Science Foundation(Grant No.41941012)the Basic Scienti fic Fund for National Public Research Institute of China(ShuXingbei Young Talent Program)under contract No.2019S06,Shandong Provincial Natural Science Foundation(ZR2022JQ17)the Tais-han Scholars Program(No.tsqn202211264).
文摘Dramatic changes in the sea ice characteristics in the Barents Sea have potential consequences for the weather and climate systems of mid-latitude continents,Arctic ecosystems,and fisheries,as well as Arctic maritime navigation.Simulations and projections of winter sea ice in the Barents Sea based on the latest 41 climate models from the Coupled Model Intercomparison Project Phase 6(CMIP6)are investigated in this study.Results show that most CMIP6 models overestimate winter sea ice in the Barents Sea and underestimate its decreasing trend.The discrepancy is mainly attributed to the simulation bias towards an overly weak ocean heat transport through the Barents Sea Opening and the underestimation of its increasing trend.The methods of observation-based model selection and emergent constraint were used to project future winter sea ice changes in the Barents Sea.Projections indicate that sea ice in the Barents Sea will continue to decline in a warming climate and that a winter ice-free Barents Sea will occur for the first time during 2042-2089 under the Shared Socioeconomic Pathway 585(SSP5-8.5).Even in the observation-based selected models,the sensitivity of winter sea ice in the Barents Sea to global warming is weaker than observed,indicating that a winter ice-free Barents Sea might occur earlier than projected by the CMIP6 simulations.
文摘对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimila-tion),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)模拟的北印度洋经向环流及热输送的气候态。LICOM能抓住北印度洋大尺度环流的季节变化特征,模拟的年平均越赤道热输送为-0.24 PW(1 PW=1015W),较之以往的数值模式结果更接近观测和同化资料。与同化资料的差异主要体现在季节变化强度,北半球夏季在赤道以南偏弱0.5 PW,这与模式夏季的纬向风应力偏弱,热输送中的大项Ekman热输送模拟偏弱,从而模拟的经圈翻转环流较浅有关。
基金Strategic Priority Research Programs of the Chinese Academy of Sciences(XDA20060500)National Natural Science Foundation of China(41521005,41676013)+1 种基金National Key Research and Development Project(2016YFC1401401)Independent project of State Key Laboratory of Tropical Oceanography(LTOZZ1702)