As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAV...To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAVs is proposed,which is modeled as a mixed-integer non-convex optimization problem(MINCOP).An algorithm to estimate the minimum number of required UAVs is firstly proposed based on the pre-estimation and simulated annealing.The MINCOP is then decomposed into three sub-problems based on the block coordinate descent method,including the spectrum allocation of UAVs,the association between UAVs and ground users,and the deployment of UAVs.Specifically,the optimal spectrum allocation is derived based on the interference mitigation and channel reuse.The association between UAVs and ground users is optimized based on local iterated optimization.A particle-based optimization algorithm is proposed to resolve the subproblem of the UAVs deployment.Simulation results show that the proposed method could effectively improve the minimum transmission rate of UAVs as well as user fairness of spectrum allocation.展开更多
This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this explorati...This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.展开更多
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra...The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.展开更多
To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-ne...To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met.展开更多
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a...The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research.展开更多
China and ASEAN countries are geographical neighbors and share a similar culture.In recent years,the bilateral trade between China and ASEAN countries has been growing continuously.The latest data from the General Adm...China and ASEAN countries are geographical neighbors and share a similar culture.In recent years,the bilateral trade between China and ASEAN countries has been growing continuously.The latest data from the General Administration of Customs shows that the bilateral trade between China and ASEAN has increased from RMB 876.38 billion in 2004to RMB 6.41 trillion in 2023,with an average annual growth rate of 11%,which is 3 percentage points higher than the overall growth rate of China's foreign trade during the same period.展开更多
In recent years,the challenges facing the development of international supply chains have been increasing.Major country competition,COVID pandemic and geopolitical conflicts have impacted the development of internatio...In recent years,the challenges facing the development of international supply chains have been increasing.Major country competition,COVID pandemic and geopolitical conflicts have impacted the development of international supply chains and continue to have negative effects.Against this background,the international community should cooperate to deal with the risks and challenges.展开更多
Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two prima...Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two primary types of risk have an impact on supply chain management and design. The first group deals with the difficulties in matching supply and demand, whereas the second group deals with disruptions to regular business operations. The essay offers a theoretical framework that combines the cooperative efforts of risk assessment and mitigation, which are critical for effectively handling potential supply chain interruptions. This content provides insightful viewpoints on the strategic resources and operational structure needed to improve organizational success. We utilized the partial least squares (PLS) method to address the problem of multicollinearity and measurement mistakes in examining cause-and-effect constructs. The statistical method, Least Squares (PLS), used in structural equation modeling, is based on partial variance. The Partial Least Squares (PLS) strategy uses a two-stage estimate procedure to calculate weights, loadings, and route estimations. Initially, several simple and complex regressions were performed with the provided model. The procedure was repeated until a solution was found, resulting in a set of weights used to determine the latent variable scores. In the second step, non-iterative PLS regression yields loadings, path coefficients, mean scores, and location parameters. According to the structural study, implementing Sustainable Supply Chain Management (SSCM) can significantly improve a business’s operational and financial performance. The findings offer a comprehensive understanding of several elements of supply chain management (SSCM), including information systems, organizational configurations, supply chain network architecture (SCND), and supply chain strategy (SCS). The supply chain is essential for effectively moving goods over great distances and encouraging cooperation between parties. Therefore, these connections are established precisely, quickly, and cheaply via a knowledgeable and efficient supply chain. Two key components are necessary for a supply chain (SC) to be successful: efficient collaboration and the smooth integration of information-sharing platforms.展开更多
In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the ap...In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.展开更多
Over the past 30 years or so,globalization has been underpinned by ever-evolving supply chains.The heightened attention to supply chain issues in recent years has been due to a series of global events in the world tha...Over the past 30 years or so,globalization has been underpinned by ever-evolving supply chains.The heightened attention to supply chain issues in recent years has been due to a series of global events in the world that have had a significant and profound impact.Factors such as the COVID pandemic,the Ukraine Crisis and increased geopolitical tensions have led to supply chain crises globally or regionally.展开更多
In order to follow through on the important instructions of General Secretary Xi Jinping to safeguard stable and smooth global industrial and supply chains,the China Council for the Promotion of International Trade he...In order to follow through on the important instructions of General Secretary Xi Jinping to safeguard stable and smooth global industrial and supply chains,the China Council for the Promotion of International Trade held in Beijing from November 28 to December 2,2023,the first China International Supply China Expo(CISCE).Premier Li Qiang attended and delivered a keynote speech at the opening ceremony of the CISCE&International Supply China Innovation and Development Forum.As the world’s first national-level exhibition themed on the supply chain,the CISCE,themed“Connecting the World for a Shared Future”,aims to create a new window for promoting high-level opening up,a new platform for fostering a new development paradigm,a new vehicle for building an open world economy,and a new practice for building a community with a shared future for mankind.It was a pragmatic,effective,and fruitful global trade event,a positive contribution to global economic recovery,development and prosperity.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par...The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.展开更多
Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve...Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.展开更多
This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance sur...This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金supported by Project funded by China Postdoctoral Science Foundation(No.2021MD703980)。
文摘To improve the efficiency and fairness of the spectrum allocation for ground communication assisted by unmanned aerial vehicles(UAVs),a joint optimization method for on-demand deployment and spectrum allocation of UAVs is proposed,which is modeled as a mixed-integer non-convex optimization problem(MINCOP).An algorithm to estimate the minimum number of required UAVs is firstly proposed based on the pre-estimation and simulated annealing.The MINCOP is then decomposed into three sub-problems based on the block coordinate descent method,including the spectrum allocation of UAVs,the association between UAVs and ground users,and the deployment of UAVs.Specifically,the optimal spectrum allocation is derived based on the interference mitigation and channel reuse.The association between UAVs and ground users is optimized based on local iterated optimization.A particle-based optimization algorithm is proposed to resolve the subproblem of the UAVs deployment.Simulation results show that the proposed method could effectively improve the minimum transmission rate of UAVs as well as user fairness of spectrum allocation.
基金This work was supported by the Humanities and Social Science Fund of Ministry of Education of China(No.20YJA630009)Shandong Natural Science Foundation of China(No.ZR2022MG002).
文摘This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.
基金This work was supported by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252).
文摘The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
基金supported by 2023 Liaoning Provincial Department of Education Basic Research Project (General Project)(JYTMS20230815)。
文摘To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met.
基金funded by the University of Jeddah,Jeddah,Saudi Arabia,under Grant No.(UJ-23-DR-26)。
文摘The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research.
文摘China and ASEAN countries are geographical neighbors and share a similar culture.In recent years,the bilateral trade between China and ASEAN countries has been growing continuously.The latest data from the General Administration of Customs shows that the bilateral trade between China and ASEAN has increased from RMB 876.38 billion in 2004to RMB 6.41 trillion in 2023,with an average annual growth rate of 11%,which is 3 percentage points higher than the overall growth rate of China's foreign trade during the same period.
文摘In recent years,the challenges facing the development of international supply chains have been increasing.Major country competition,COVID pandemic and geopolitical conflicts have impacted the development of international supply chains and continue to have negative effects.Against this background,the international community should cooperate to deal with the risks and challenges.
文摘Due to the rapid progress of information technology, organizations anticipate significant changes in the planning, scheduling, and optimization aspects of operation and supply chain management (SCM) shortly. Two primary types of risk have an impact on supply chain management and design. The first group deals with the difficulties in matching supply and demand, whereas the second group deals with disruptions to regular business operations. The essay offers a theoretical framework that combines the cooperative efforts of risk assessment and mitigation, which are critical for effectively handling potential supply chain interruptions. This content provides insightful viewpoints on the strategic resources and operational structure needed to improve organizational success. We utilized the partial least squares (PLS) method to address the problem of multicollinearity and measurement mistakes in examining cause-and-effect constructs. The statistical method, Least Squares (PLS), used in structural equation modeling, is based on partial variance. The Partial Least Squares (PLS) strategy uses a two-stage estimate procedure to calculate weights, loadings, and route estimations. Initially, several simple and complex regressions were performed with the provided model. The procedure was repeated until a solution was found, resulting in a set of weights used to determine the latent variable scores. In the second step, non-iterative PLS regression yields loadings, path coefficients, mean scores, and location parameters. According to the structural study, implementing Sustainable Supply Chain Management (SSCM) can significantly improve a business’s operational and financial performance. The findings offer a comprehensive understanding of several elements of supply chain management (SSCM), including information systems, organizational configurations, supply chain network architecture (SCND), and supply chain strategy (SCS). The supply chain is essential for effectively moving goods over great distances and encouraging cooperation between parties. Therefore, these connections are established precisely, quickly, and cheaply via a knowledgeable and efficient supply chain. Two key components are necessary for a supply chain (SC) to be successful: efficient collaboration and the smooth integration of information-sharing platforms.
文摘In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.
文摘Over the past 30 years or so,globalization has been underpinned by ever-evolving supply chains.The heightened attention to supply chain issues in recent years has been due to a series of global events in the world that have had a significant and profound impact.Factors such as the COVID pandemic,the Ukraine Crisis and increased geopolitical tensions have led to supply chain crises globally or regionally.
文摘In order to follow through on the important instructions of General Secretary Xi Jinping to safeguard stable and smooth global industrial and supply chains,the China Council for the Promotion of International Trade held in Beijing from November 28 to December 2,2023,the first China International Supply China Expo(CISCE).Premier Li Qiang attended and delivered a keynote speech at the opening ceremony of the CISCE&International Supply China Innovation and Development Forum.As the world’s first national-level exhibition themed on the supply chain,the CISCE,themed“Connecting the World for a Shared Future”,aims to create a new window for promoting high-level opening up,a new platform for fostering a new development paradigm,a new vehicle for building an open world economy,and a new practice for building a community with a shared future for mankind.It was a pragmatic,effective,and fruitful global trade event,a positive contribution to global economic recovery,development and prosperity.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174)。
文摘The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
基金support of the Natural Science Foundation of China(U21A20218)the National Key Research and Development Program(2021YFD1700202-02)+1 种基金the Agricultural Research System of China(CARS-22-G-12)the Fostering Foundation for the Excellent Ph.D.Dissertation of Gansu Agricultural University(YB2024002).
文摘Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.
文摘This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.