Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts...Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.展开更多
Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-lin...Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.展开更多
In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capa...In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.展开更多
A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage...A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz .展开更多
Based on analysis of near infrared spectral absorption of methane,absorption type optical fiber methane gas sensor with high sensitivity using DFB LD as a source is demonstrated. Light source modulation harmonic measu...Based on analysis of near infrared spectral absorption of methane,absorption type optical fiber methane gas sensor with high sensitivity using DFB LD as a source is demonstrated. Light source modulation harmonic measurement is presented in this paper. In order to eliminate the noise, the ratio of the fundamental and second-harmonic signals is used. The mathematical model of gas concentration harmonic measurement is built up.The detection result of methane concentration is also shown. Experiments have proved a sensitivity of 28×10-6.展开更多
Water-soluble organic matter(WSOM) represents a critical fraction of fine particles(PM2.5)in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast...Water-soluble organic matter(WSOM) represents a critical fraction of fine particles(PM2.5)in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast techniques for the ambient measurements. In this study,a novel system for the on-line measurement of water-soluble components in PM2.5, the particle-into-liquid sampler(PILS)–Nebulizer–aerosol chemical speciation monitor(ACSM), was developed by combining a PILS, a nebulizer, and an ACSM. High time resolution concentrations of WSOM, sulfate, nitrate, ammonium, and chloride, as well as mass spectra, can be obtained with satisfied quality control results. The system was firstly applied in China for field measurement of WSOM. The mass spectrum of WSOM was found to resemble that of oxygenated organic aerosol, and WSOM agreed well with secondary inorganic ions. All evidence collected in the field campaign demonstrated that WSOM could be a good surrogate of secondary organic aerosol(SOA). The PILS–Nebulizer–ACSM system can thus be a useful tool for intensive study of WSOM and SOA in PM2.5.展开更多
This paper presents an on-line measurement method for the diameter and roundness error of balls.An easy-installation rotary scanning system,which integrates the principles of the diameter and the roundness measurement...This paper presents an on-line measurement method for the diameter and roundness error of balls.An easy-installation rotary scanning system,which integrates the principles of the diameter and the roundness measurements,is constructed.The rotary scanning system consists of a rotary stage,a linear stage,and two sensors with a什at probe.Two sensors are initially installed on the linear stage and contact each other.The outputs of two sensors are reset to zero at first.The ball is then mounted on the rotary stage and positioned between two flat probes.The variations of the diameter and the roundness error of the ball at each angular position can be directly recorded by two sensors when the ball is rotated by the rotary stage.Substituting the outputs of two sensors into the proposed mathematical models,the diameter and roundness error can be evaluated.The effects of the alignment error induced by the spindle error of the rotary stage and the titling error and the eccentric error of the ball on the measurement accuracy can be self-separated in the proposed on-line measurement method.A series of experiments are carried out to verify the effectiveness and the capability of the proposed on-line measurement method and the designed rotary scanning system.The designed system is easy to construct both in the laboratory environment and the factory field.展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the e...The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.展开更多
Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted ...Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.展开更多
It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate...It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate particles and reservoir particles are essential factors that control the behaviors of clathrate hydrates in different applications.In this review,we summarize the typical micro-force measurement apparatus and methods utilized to study hydrate particle systems.In addition,the adhesion test results,the related understandings,and the applied numerical calculation models are systematically discussed.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been emplo...The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.展开更多
The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve ...The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve the interference fringes with the entire fringe to analyze the quantitative influence of vibration on gravity measurements.展开更多
This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address th...This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address the problems of low precision of traditional contact thickness gauges and radiation risks of radiation-based thickness gauges.First,the measurement method and measurement structure of the thickness calibration system were introduced.Then,the hardware circuit of the thickness system was established based on the STM32 core chip.Finally,the system software was designed to implement system control to filter algorithms and human-computer interaction.Experiments have proven the excellent performance of the differential noncontact thickness measurement calibration system based on laser displacement sensors,which not only considerably improves measurement accuracy but also effectively reduces safety risks during the measurement process.The system offers guiding significance and application value in the field of steel plate production and processing.展开更多
Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sour...Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.展开更多
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the co...Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.展开更多
文摘Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40525016.
文摘Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.
文摘In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.
基金This work has been carried out with the support of National Natural Science Foundation(No.59675054)
文摘A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz .
文摘Based on analysis of near infrared spectral absorption of methane,absorption type optical fiber methane gas sensor with high sensitivity using DFB LD as a source is demonstrated. Light source modulation harmonic measurement is presented in this paper. In order to eliminate the noise, the ratio of the fundamental and second-harmonic signals is used. The mathematical model of gas concentration harmonic measurement is built up.The detection result of methane concentration is also shown. Experiments have proved a sensitivity of 28×10-6.
基金supported by the National Natural Science Foundation of China(Nos.U1301234,21277003)the Ministry of Science and Technology of China(No.2014BAC21B03)the Science and Technology Plan of Shenzhen Municipality
文摘Water-soluble organic matter(WSOM) represents a critical fraction of fine particles(PM2.5)in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast techniques for the ambient measurements. In this study,a novel system for the on-line measurement of water-soluble components in PM2.5, the particle-into-liquid sampler(PILS)–Nebulizer–aerosol chemical speciation monitor(ACSM), was developed by combining a PILS, a nebulizer, and an ACSM. High time resolution concentrations of WSOM, sulfate, nitrate, ammonium, and chloride, as well as mass spectra, can be obtained with satisfied quality control results. The system was firstly applied in China for field measurement of WSOM. The mass spectrum of WSOM was found to resemble that of oxygenated organic aerosol, and WSOM agreed well with secondary inorganic ions. All evidence collected in the field campaign demonstrated that WSOM could be a good surrogate of secondary organic aerosol(SOA). The PILS–Nebulizer–ACSM system can thus be a useful tool for intensive study of WSOM and SOA in PM2.5.
基金the National Natural Science Foundation of China(51905078)National Key Research and Development Program of China(2018YFB2001400,2017YFF0204800)Fundamental Research Funds for the Central Universities(DUT19RC(4)007).
文摘This paper presents an on-line measurement method for the diameter and roundness error of balls.An easy-installation rotary scanning system,which integrates the principles of the diameter and the roundness measurements,is constructed.The rotary scanning system consists of a rotary stage,a linear stage,and two sensors with a什at probe.Two sensors are initially installed on the linear stage and contact each other.The outputs of two sensors are reset to zero at first.The ball is then mounted on the rotary stage and positioned between two flat probes.The variations of the diameter and the roundness error of the ball at each angular position can be directly recorded by two sensors when the ball is rotated by the rotary stage.Substituting the outputs of two sensors into the proposed mathematical models,the diameter and roundness error can be evaluated.The effects of the alignment error induced by the spindle error of the rotary stage and the titling error and the eccentric error of the ball on the measurement accuracy can be self-separated in the proposed on-line measurement method.A series of experiments are carried out to verify the effectiveness and the capability of the proposed on-line measurement method and the designed rotary scanning system.The designed system is easy to construct both in the laboratory environment and the factory field.
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金This project is partly funded by Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.“Research on active Security Defense Strategies for Distribution Internet of Things Based on Trustworthy,under Grant No.5211DS22000G”.
文摘The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208, and 12174367)the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301604)+1 种基金the National Key Research and Development Program of China (Grant No. 2021YFE0113100)supported by Beijing Academy of Quantum Information Sciences
文摘Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.
基金supported by the National Key Research and Development Project (No.2018YFE0126400)Key Program of Marine Economy Development (Six Marine Industries)Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC[2020]047)。
文摘It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate particles and reservoir particles are essential factors that control the behaviors of clathrate hydrates in different applications.In this review,we summarize the typical micro-force measurement apparatus and methods utilized to study hydrate particle systems.In addition,the adhesion test results,the related understandings,and the applied numerical calculation models are systematically discussed.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
基金funded through the Researchers Supporting Project Number(RSPD2024R596),King Saud University,Riyadh,Saudi Arabia.
文摘The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems,as well as satellites.More recently,unmanned aerial vehicles have also been employed for this purpose.The accurate detection and mapping of a target such as buildings,trees,and terrains are of utmost importance in various applications of unmanned aerial vehicles(UAVs),including search and rescue operations,object transportation,object detection,inspection tasks,and mapping activities.However,the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,the intricate nature of the sites,and the complexity of mapping algorithms.The present system introduces a costeffective solution for measurement and mapping by utilizing a small unmanned aerial vehicle(UAV)equipped with an 8-beam Light Detection and Ranging(LiDAR)system.This approach offers advantages over traditional methods that rely on expensive cameras and complex algorithm-based approaches.The reflective properties of laser beams have also been investigated.The system provides prompt results in comparison to traditional camerabased surveillance,with minimal latency and the need for complex algorithms.The Kalman estimation method demonstrates improved performance in the presence of noise.The measurement and mapping of external objects have been successfully conducted at varying distances,utilizing different resolutions.
基金funded by Hebei Key Laboratory of Seismic Disaster Instrument and Monitoring Technology(Grant No.FZ224201)National Key Research and Development Project(Grant No.2022YFC2204301)the Special Fund of the Institute of Earthquake Forecasting,China Earthquake Administration(Grant No.CEAIEF2022030105).
文摘The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve the interference fringes with the entire fringe to analyze the quantitative influence of vibration on gravity measurements.
文摘This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address the problems of low precision of traditional contact thickness gauges and radiation risks of radiation-based thickness gauges.First,the measurement method and measurement structure of the thickness calibration system were introduced.Then,the hardware circuit of the thickness system was established based on the STM32 core chip.Finally,the system software was designed to implement system control to filter algorithms and human-computer interaction.Experiments have proven the excellent performance of the differential noncontact thickness measurement calibration system based on laser displacement sensors,which not only considerably improves measurement accuracy but also effectively reduces safety risks during the measurement process.The system offers guiding significance and application value in the field of steel plate production and processing.
基金This work is supported by National Natural Science Foundation of China(Nos.U23B20151 and 52171253).
文摘Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
基金partially supported by the National Natural Science Foundations of China (Grant No.11901317)the China Postdoctoral Science Foundation (Grant No.2020M680480)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.2023MS078)the Beijing Natural Science Foundation (Grant No.1232021)。
文摘Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.