The observation data for 5 d at a station in the South China Sea is presented. After brief anMysis of the wind speed, air temperature from the ship-borne meteorological instruments and temperature and salinity profile...The observation data for 5 d at a station in the South China Sea is presented. After brief anMysis of the wind speed, air temperature from the ship-borne meteorological instruments and temperature and salinity profiles from the CTD (conductivity, temperature, depth recorder) data, the authors find that the CTD casts are too sparse for us to understand the diurnal evolution of the thermal structure in the upper ocean. A one-dimensional (1D) numericM code based on Mellor-Yamada turbulence closure model is used to reconstruct the upper ocean thermal structure, utilizing the atmospheric forcing data from ship-borne weather station. The simulation results show good agreement with the observational data; the significance of breaking waves is also briefly discussed. The evolution of turbulence kinetic energy (TKE) and the contribution from shear production and buoy- ancy production are discussed respectively. Finally, several possible factors which might influence the numerical results are briefly analyzed.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive...Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.展开更多
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the...This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.展开更多
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ...This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.展开更多
Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of tryi...Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of trying.A unified numerical predictor-corrector guidance method based on characteristic models for aerocapture is proposed.The numerical predictor-corrector guidance method is used to achieve autonomy and high accuracy,and the characteristic model control method is introduced to achieve robustness.At the same time,by transforming path constraints,characteristic model equations including apogee deviation and altitude differentiation are established.Based on the characteristic model equations,a unified guidance law which can satisfy path constraints and guidance objectives simultaneously is designed.In guidance problems,guidance deviation is not directly obtained from the output of the dynamics at present,but is calculated through integral and algebraic equations.Therefore,the method of directly discretizing differential equations cannot be used to establish characteristic models,which brings great difficulty to characteristic modeling.A method for characteristic modeling of guidance problems is proposed,and convergence analysis of the proposed guidance law is also provided.Finally,a joint numerical simulation of guidance and control considering navigation deviation and various uncertainties is conducted to verify the effectiveness of the proposed method.The proposed unified method can be extended to general aerodynamic entry guidance designs,providing theoretical and methodological support for them.展开更多
This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious...This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike.展开更多
Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ...Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.展开更多
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur...To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.展开更多
Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me...Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.展开更多
In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be p...In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.展开更多
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o...Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .展开更多
In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( T...In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.展开更多
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ...The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment.展开更多
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u...A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).展开更多
The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied.The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed.I...The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied.The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed.In particular,the cases of local heating from below and distributed thermal load from the lateral walls are considered.The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation.A benzine–air system is considered as reference system.The variation in time of the contact angle is described for both heating modes.Under lateral heating,near-wall boundary layers emerge together with strong convection,whereas the local thermal load from the lower wall results in the formation of multicellular motion in the entire volume of the fluids and the appearance of transition regimes followed by a steady-state mode.The results of the present study can aid the design of equipment for thermal coating or drying and the development of methods for the formation of patterns with required structure and morphology.展开更多
Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between...Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.展开更多
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,...The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.展开更多
基金The National Basic Research Program of China under contract Nos 2011CB403501 and 2009CB421201the National Natural Science Foundation of China under contract Nos 41176016 and 41076007
文摘The observation data for 5 d at a station in the South China Sea is presented. After brief anMysis of the wind speed, air temperature from the ship-borne meteorological instruments and temperature and salinity profiles from the CTD (conductivity, temperature, depth recorder) data, the authors find that the CTD casts are too sparse for us to understand the diurnal evolution of the thermal structure in the upper ocean. A one-dimensional (1D) numericM code based on Mellor-Yamada turbulence closure model is used to reconstruct the upper ocean thermal structure, utilizing the atmospheric forcing data from ship-borne weather station. The simulation results show good agreement with the observational data; the significance of breaking waves is also briefly discussed. The evolution of turbulence kinetic energy (TKE) and the contribution from shear production and buoy- ancy production are discussed respectively. Finally, several possible factors which might influence the numerical results are briefly analyzed.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金support from the National Key R&D plan(Grant No.2022YFC3004303)the National Natural Science Foundation of China(Grant No.42107161)+3 种基金the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04)the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(sklhse-2023-C-01)the Open Research Fund Program of Key Laboratory of the Hydrosphere of the Ministry of Water Resources(mklhs-2023-04)the China Three Gorges Corporation(XLD/2117).
文摘Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金the National Natural Science Foundation of China(No.52074349)the Graduate Research Innovation Project of Hunan Province,China(No.CX20230194)。
文摘This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金This research has been conducted under SEGTRANS project,funded by the Centre for Industrial Technological Development(CDTI,Government of Spain).
文摘This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.
基金The National Key R&D Program of China(2018YFA0703800)。
文摘Aerocapture is one of the key technologies for low-cost transportation,with high demands of autonomy,accuracy,and robustness of guidance and control,due to its high reliability requirements for only one chance of trying.A unified numerical predictor-corrector guidance method based on characteristic models for aerocapture is proposed.The numerical predictor-corrector guidance method is used to achieve autonomy and high accuracy,and the characteristic model control method is introduced to achieve robustness.At the same time,by transforming path constraints,characteristic model equations including apogee deviation and altitude differentiation are established.Based on the characteristic model equations,a unified guidance law which can satisfy path constraints and guidance objectives simultaneously is designed.In guidance problems,guidance deviation is not directly obtained from the output of the dynamics at present,but is calculated through integral and algebraic equations.Therefore,the method of directly discretizing differential equations cannot be used to establish characteristic models,which brings great difficulty to characteristic modeling.A method for characteristic modeling of guidance problems is proposed,and convergence analysis of the proposed guidance law is also provided.Finally,a joint numerical simulation of guidance and control considering navigation deviation and various uncertainties is conducted to verify the effectiveness of the proposed method.The proposed unified method can be extended to general aerodynamic entry guidance designs,providing theoretical and methodological support for them.
文摘This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike.
基金Engineering and Physical Sciences Research Council (EPSRC) is also acknowledged for funding this work under Grant Number EP/N009207/1.
文摘Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.
基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200494)China Postdoctoral Science Foundation(Grant No.2021M701725)+3 种基金Jiangsu Postdoctoral Research Funding Program(Grant No.2021K522C)Fundamental Research Funds for the Central Universities(Grant No.30919011246)National Natural Science Foundation of China(Grant No.52278188)Natural Science Foundation of Jiangsu Province(Grant No.BK20211196)。
文摘To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn.
基金The National Natural Science Foundation of China under contract No.42076214.
文摘Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.
文摘In this work, we present numerical modelling of coupled heat and mass transfer within porous materials. Our study focuses on cinder block bricks generally used in building construction. The material is assumed to be placed in air. Moisture content and temperature have been chosen as the main transfer drivers and the equations governing these transfer drivers are based on the Luikov model. These equations are solved by an implicit finite difference scheme. A Fortran code associated with the Thomas algorithm was used to solve the equations. The results show that heat and mass transfer depend on the temperature of the air in contact with the material. As this air temperature rises, the temperature within the material increases, and more rapidly at the material surface. Also, thermal conductivity plays a very important role in the thermal conduction of building materials and influences heat and mass transfer in these materials. Materials with higher thermal conductivity diffuse more heat.
文摘Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. .
文摘In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.
基金This research was funded through the National Natural Science Foundation of China(Grant Nos.52108299 and 52178312)the China Postdoctoral Science Foundation(Grant No.2021M693740)the Basal Research Fund Support by Chongqing University.
文摘The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51974082 and 52274377)the Fundamental Research Funds for the Central Universities(Grant No.N2209001)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,Grant No.BP0719037)。
文摘A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20).
文摘The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied.The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed.In particular,the cases of local heating from below and distributed thermal load from the lateral walls are considered.The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation.A benzine–air system is considered as reference system.The variation in time of the contact angle is described for both heating modes.Under lateral heating,near-wall boundary layers emerge together with strong convection,whereas the local thermal load from the lower wall results in the formation of multicellular motion in the entire volume of the fluids and the appearance of transition regimes followed by a steady-state mode.The results of the present study can aid the design of equipment for thermal coating or drying and the development of methods for the formation of patterns with required structure and morphology.
基金financially supported by China National Funds for Distinguished Young Scientists(Grant No.52025112)the Key Projects of the National Natural Science Foundation of China(Grant No.52331011)。
文摘Two-dimensional(2D)flume experiments are useful in investigating the performances of floating breakwaters(FBs),including hydrodynamic performances,motion responses,and mooring forces.Designing a reasonable gap between the flume wall and the FBs is a critical step in 2D flume tests.However,research on the effect of the gap on the accuracy of 2D FB experimental results is scarce.To address this issue,a numerical wave tank is developed using CFD to estimate the wave-FB interaction of a moored dual-cylindrical FB,and the results are compared to experimental data from a previously published work.There is good agreement between them,indicating that the numerical model is sufficiently accurate.The numerical model is then applied to explore the effect of gap diffraction on the performance of FBs in2D experiments.It was discovered that the nondimensional gap length L_(Gap)/W_(Pool)should be smaller than 7.5%to ensure that the relative error of the transmission coefficient is smaller than 3%.The influence of the gap is also related to the entering wave properties,such as the wave height and period.
基金Project(NB-2020-JG-07)supported by the Research and Engineering Application of Key Technologies for New Building Industrialization Project of China Northwest Architectural Design and Research Institute Co.,Ltd.Project(2023-CXTD-29)supported by the Key Scientific and Technological Innovation Team of Shaanxi Province,ChinaProject supported by the K.C.Wong Education Foundation。
文摘The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.