Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,...Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.展开更多
The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.Fo...The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.展开更多
In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne...An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.展开更多
This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle...This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle paths in Nanjing, China,were observed with cameras.Then,the field data including vehicle number,velocity characteristics and passing event features were analyzed in detail.Data analysis and fitting reveal that the speed difference has little impact on the passing event number,as does the bicycle ratio.The Gaussian function can better describe the relationship between the passing event number and bicycle volume (density).The valid use level of bicycle path width influences the inflexion of the passing events-density fitting curve.The conclusions can be applied for estimating the passing events in mixed bicycle flows and for choosing a suitable width of separate bicycle path.展开更多
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow...Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting(CC)molds with narrow widths for the production of automobile exposed panels.Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process.The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold.Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone.The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min^−1 and casting speed of 1.7 m·min^−1.Under the present experimental conditions,the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.展开更多
The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) ...The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) and low temperature conditions. Experimental results show that when the operating pressure is increased, C2+ yield slightly decreases, while the maximum ratio of ethylene to ethane remains unchanged. Moreover, it has been found empirically that increase of pressure does not affect the catalyst behavior permanently, the catalyst recovers its original low pressure performance without hysteresis behavior by reducing the pressure. Under the investigated conditions, when oxygen is completely consumed, the increase of GHSV leads to improvement in C2 selectivity, while C3+ and COx selectivities decrease slightly. The C2+ selectivity increases by increase of nitrogen diluent in the feed, but the C3+ hydrocarbons selectivities decrease with increase of nitrogen since it is possible that further dilution at high pressure may reduce the probability of collision between CH3 and C2+ hydrocarbons. During the stability test at high pressure, the catalyst performance remains unchanged throughout the 20 h running. The fresh and used catalysts were characterized using XRD, SEM and N2 adsorption-desorption methods. It was found that the phase transformation of the support from α-cristobalite to tridymite and quartz does not have obvious effect on catalyst performance at high pressure.展开更多
An enclosed cyclone passageway(ECP)dust-collecting fan is discussed.The ECP fan separates dust by centrifugal force originating from a driven spiral airflow,and its design takes the constraints of Chinese underground ...An enclosed cyclone passageway(ECP)dust-collecting fan is discussed.The ECP fan separates dust by centrifugal force originating from a driven spiral airflow,and its design takes the constraints of Chinese underground coal mines into consideration.Using the force equilibrium law,a general equation for dust removal in the centrifugal dust removal section(CDRS)of the ECP fan is deduced.This general equation is simplified using the CDRS structure and the fan operating parameters and is analysed numerically.The attractive results show that increases in the airflow rate of the fan,the structural ratio of the ECPs and the radius of the extended axis can improve the dust removal performance of the CDRS.Furthermore,the effects of the structural ratio and the radius on dust removal dominate over that of the flow rate,and the effect of the structural ratio is more significant than that of the radius.展开更多
Solid oxide fuel cell combined with heat and power(SOFC-CHP)system is a distributed power generation system with low pollution and high efficiency.In this paper,a 10 kW SOFC-CHP system model using syngas was built in ...Solid oxide fuel cell combined with heat and power(SOFC-CHP)system is a distributed power generation system with low pollution and high efficiency.In this paper,a 10 kW SOFC-CHP system model using syngas was built in Aspen plus.Key operating parameters,such as steam to fuel ratio,stack temperature,reformer temperature,air flow rate,and air preheating temperature,were analyzed.Optimization was conducted based on the simulation results.Results suggest that higher steam to fuel ratio is beneficial to the electrical efficiency,but it might decrease the gross system efficiency.Higher stack and reformer temperatures contribute to the electrical efficiency,and the optimal operating temperatures of stack and reformer when considering the stack degradation are 750℃and 700℃,respectively.The air preheating temperature barely affects the electrical efficiency but affects the thermal efficiency and the gross system efficiency,the recommended value is around 600℃under the reference condition.展开更多
The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The re...The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.展开更多
Artificial neural network procedures were used to predict the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate in different operational conditions. The pulp density,pH,rotation...Artificial neural network procedures were used to predict the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate in different operational conditions. The pulp density,pH,rotation rate,coal particle size,dosage of collector,frother and conditioner were used as inputs to the network. Feed-forward artificial neural networks with 5-30-2-1 and 7-10-3-1 arrangements were capable to estimate the combustible value and combustible recovery of coal flotation concentrate respectively as the outputs. Quite satisfactory correlations of 1 and 0.91 in training and testing stages for combustible value and of 1 and 0.95 in training and testing stages for combustible recovery prediction were achieved. The proposed neural network models can be used to determine the most advantageous operational conditions for the expected concentrate assay and recovery in the coal flotation process.展开更多
Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation sel...Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.展开更多
The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this ...The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this study,the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters,such as weight on bit(WOB)and revolutions per minute(RPM).Also,artificial neural networks(ANN)model for predicting the rate of penetration(ROP)was developed using datasets acquired during the drilling operation.The relationships among mechanical operating parameters(WOB and RPM)and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model.The results show that ROP has an exponential relationship with WOB,whereas ROP has linear relationship with RPM.Finally,the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal.展开更多
Matching optimization of resonant parameters among the high power inverters,low power transformers and plasma reactors have significant effects on the performance and output of the reactor array when applying the part...Matching optimization of resonant parameters among the high power inverters,low power transformers and plasma reactors have significant effects on the performance and output of the reactor array when applying the partitioned operation method.In this paper,the Matlab/Simulink electrical model was established based on the method of partitioned operation.The matching relation between resonant parameters is analyzed on the basis of experimental result.As a consequence,transformer leakage inductance and working frequency are the important parameters influencing the operational efficiency of system,leakage inductance of transformer should be adjusted based on the equivalent capacitance of plasma reactor to realize the matching optimization of resonant parameters.展开更多
The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a ...The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a nonlinear operator differential equation where its changes depends on the causal operator T, and semigroup of operator A(t), and all initial parameters (t0, x0) . The initial information is described x(t)=φ(t) for almost all t ≤t0 and φ(t0) =φ0. We will study the nonlinear variation of parameters (NVP) for this type of nonanticipating operator differential equations and develop Alekseev type of NVP.展开更多
AIM:To investigate intra-operator variability of semiquantitative perfusion parameters using dynamic contrast-enhanced ultrasonography(DCE-US),following bolus injections of SonoVue.METHODS:The in vitro experiments w...AIM:To investigate intra-operator variability of semiquantitative perfusion parameters using dynamic contrast-enhanced ultrasonography(DCE-US),following bolus injections of SonoVue.METHODS:The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank.In the in vivo experiments,B16F10 melanoma cells were xenografted to five nude mice.Both in vitro and in vivo,images were acquired following bolus injections of the ultrasound contrast agent SonoVue(Bracco,Milan,Italy) and using a Toshiba Aplio ultrasound scanner connected to a 2.9-5.8 MHz linear transducer(PZT,PLT 604AT probe)(Toshiba,Japan) allowing harmonic imaging("Vascular Recognition Imaging") involving linear raw data.A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute,Villejuif,France and used to evaluate seven perfusion parameters from time-intensity curves.Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation(CV).RESULTS:In vitro,different volumes of SonoVue were tested with the three phantoms:intra-operator variability was found to range from 2.33% to 23.72%.In vivo,experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%.In addition,the area under the curve(AUC) and the area under the wash-out(AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%.CONCLUSION:AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.展开更多
This study investigated the effect of fixed height standing-workstation on different people with diverse anthropometry dimensions. Measurements of some anthropometric and physiological parameters are carried out as ba...This study investigated the effect of fixed height standing-workstation on different people with diverse anthropometry dimensions. Measurements of some anthropometric and physiological parameters are carried out as bases for the calculation of body mass index (BMI) and the determination of the maximum heart rate (HRmax) and aerobic power (VO2max) of individual subject while performing manual cutting operation with hacksaw on fixed vice height of 940 mm. Twenty subjects (S1 to S20) parted 2 mm thick square-pipe of 25 mm × 25 mm. Each subject carried out cutting operation in 5 replicates and their physiological parameters during activities are measured to determine their expended energy (EE) and oxygen consumption rate (VO2). The results showed that subject S4 with BMI of 20.76 kg/m2 has maximum cutting rate of 5.33 stroke/s, while subject S8 with BMI of 23.39 kg/m2 has minimum cutting rate of 0.92 stroke/s. There was a statistically significant effect on the interaction between BMI, EE and Cutting rate, with F = 827.54, P = 0.000, R2 = 0.967 and S = 1.749 units. Subject S11 was discovered to have VO2 (28.54 l/min) and VO2max (24.36 ml/min/kg), with highest value of EE (2.94 kcal/min). Wear rates of 1.86 teeth/s and 9.55 teeth/s have the same energy cost (EE = 0.87 kcal/min) but different cutting time of 36.65 s (S18) and 10.89 s (S20) respectively. This could explain in-part that excess 25.76 s utilized in operation time by subject S18 is responsible for keeping approximately 7.7 teeth intact as regards tool management. EE and Tool Wear Rate in one-way analysis of variance, were statistically significant (F = 45.87, P = 0.000, R2 = 54.69% and S = 1.617 units) at 0.05 level.展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR wer...Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR were assessed in 690 Chinese adults (305 men and 385 women) and compared with magnetic resonance imaging (MRI) measurements of abdominal visceral adipose tissue (VA). Receiver operating characteristic (ROC) curves were generated and used to determine the threshold point for each anthropometric parameter. Results 1) MRI showed that 61.7% of overweight/obese individuals (BMI≥25 kg/m2) and 14.2% of normal weight (BMI<25 kg/m2) individuals had abdominal visceral obesity (VA≥100 cm2). 2) VA was positively correlated with each anthropometric variable, of which WC showed the highest correlation (r=0.73-0.77, P<0.001). 3) The best cut-off points for assessing abdominal visceral obesity were as followed: BMI of 26 kg/m2, WC of 90 cm, and WHR of 0.93, with WC being the most sensitive and specific factor. 4) Among subjects with BMI≥28 kg/m2 or WC≥95 cm, 95% of men and 90% of women appeared to have abdominal visceral obesity. Conclusion Measurements of BMI, WC, and WHR can be used in the prediction of abdominal visceral obesity, of which WC was the one with better accuracy.展开更多
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the ...The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.展开更多
基金supported by the Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund,Contract No.CNNC-LCKY-202234)the Project of the Nuclear Power Technology Innovation Center of Science Technology and Industry(No.HDLCXZX-2023-HD-039-02)。
文摘Accurate and efficient online parameter identification and state estimation are crucial for leveraging digital twin simulations to optimize the operation of near-carbon-free nuclear energy systems.In previous studies,we developed a reactor operation digital twin(RODT).However,non-differentiabilities and discontinuities arise when employing machine learning-based surrogate forward models,challenging traditional gradient-based inverse methods and their variants.This study investigated deterministic and metaheuristic algorithms and developed hybrid algorithms to address these issues.An efficient modular RODT software framework that incorporates these methods into its post-evaluation module is presented for comprehensive comparison.The methods were rigorously assessed based on convergence profiles,stability with respect to noise,and computational performance.The numerical results show that the hybrid KNNLHS algorithm excels in real-time online applications,balancing accuracy and efficiency with a prediction error rate of only 1%and processing times of less than 0.1 s.Contrastingly,algorithms such as FSA,DE,and ADE,although slightly slower(approximately 1 s),demonstrated higher accuracy with a 0.3%relative L_2 error,which advances RODT methodologies to harness machine learning and system modeling for improved reactor monitoring,systematic diagnosis of off-normal events,and lifetime management strategies.The developed modular software and novel optimization methods presented offer pathways to realize the full potential of RODT for transforming energy engineering practices.
基金supported by the National Natural Science Foundation of China(Grant No.52021005)Outstanding Youth Foundation of Shandong Province of China(Grant No.ZR2021JQ22)Taishan Scholars Program of Shandong Province of China(Grant No.tsqn201909003)。
文摘The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
文摘An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
基金The National Natural Science Foundation of China(No.51238008,51408322)
文摘This paper investigates the passing events between electric bicycles and conventional bicycles and explores the relationships between passing events and traffic parameters in bicycle facilities.Three exclusive bicycle paths in Nanjing, China,were observed with cameras.Then,the field data including vehicle number,velocity characteristics and passing event features were analyzed in detail.Data analysis and fitting reveal that the speed difference has little impact on the passing event number,as does the bicycle ratio.The Gaussian function can better describe the relationship between the passing event number and bicycle volume (density).The valid use level of bicycle path width influences the inflexion of the passing events-density fitting curve.The conclusions can be applied for estimating the passing events in mixed bicycle flows and for choosing a suitable width of separate bicycle path.
基金This work was financially supported by the Hunan Valin Lianyuan Iron&Steel Co.,Ltd.,China(No.18H00582).The authors are grateful to Hunan Valin Lianyuan Iron&Steel Co.,Ltd.,China for their assistance with the industrial measurement of velocities near the mold surface.
文摘Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting(CC)molds with narrow widths for the production of automobile exposed panels.Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process.The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold.Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone.The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min^−1 and casting speed of 1.7 m·min^−1.Under the present experimental conditions,the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.
文摘The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) and low temperature conditions. Experimental results show that when the operating pressure is increased, C2+ yield slightly decreases, while the maximum ratio of ethylene to ethane remains unchanged. Moreover, it has been found empirically that increase of pressure does not affect the catalyst behavior permanently, the catalyst recovers its original low pressure performance without hysteresis behavior by reducing the pressure. Under the investigated conditions, when oxygen is completely consumed, the increase of GHSV leads to improvement in C2 selectivity, while C3+ and COx selectivities decrease slightly. The C2+ selectivity increases by increase of nitrogen diluent in the feed, but the C3+ hydrocarbons selectivities decrease with increase of nitrogen since it is possible that further dilution at high pressure may reduce the probability of collision between CH3 and C2+ hydrocarbons. During the stability test at high pressure, the catalyst performance remains unchanged throughout the 20 h running. The fresh and used catalysts were characterized using XRD, SEM and N2 adsorption-desorption methods. It was found that the phase transformation of the support from α-cristobalite to tridymite and quartz does not have obvious effect on catalyst performance at high pressure.
基金supported by the Natural Science Foundation of China and Shenhua Group Corporation Limited(U1361118)the Hunan Provincial Natural Science Foundation of China(13JJ8016,2015JJ2061)+1 种基金the State Key Laboratory for Geomechanics and Deep Underground Engineering(SKLGDUEK1018)the Project of Scientific Research Fund of Hunan Provincial Education Department(Nos.12C1099,14C0425).
文摘An enclosed cyclone passageway(ECP)dust-collecting fan is discussed.The ECP fan separates dust by centrifugal force originating from a driven spiral airflow,and its design takes the constraints of Chinese underground coal mines into consideration.Using the force equilibrium law,a general equation for dust removal in the centrifugal dust removal section(CDRS)of the ECP fan is deduced.This general equation is simplified using the CDRS structure and the fan operating parameters and is analysed numerically.The attractive results show that increases in the airflow rate of the fan,the structural ratio of the ECPs and the radius of the extended axis can improve the dust removal performance of the CDRS.Furthermore,the effects of the structural ratio and the radius on dust removal dominate over that of the flow rate,and the effect of the structural ratio is more significant than that of the radius.
基金the National Key R&D Program of China(2017YFB0601903).
文摘Solid oxide fuel cell combined with heat and power(SOFC-CHP)system is a distributed power generation system with low pollution and high efficiency.In this paper,a 10 kW SOFC-CHP system model using syngas was built in Aspen plus.Key operating parameters,such as steam to fuel ratio,stack temperature,reformer temperature,air flow rate,and air preheating temperature,were analyzed.Optimization was conducted based on the simulation results.Results suggest that higher steam to fuel ratio is beneficial to the electrical efficiency,but it might decrease the gross system efficiency.Higher stack and reformer temperatures contribute to the electrical efficiency,and the optimal operating temperatures of stack and reformer when considering the stack degradation are 750℃and 700℃,respectively.The air preheating temperature barely affects the electrical efficiency but affects the thermal efficiency and the gross system efficiency,the recommended value is around 600℃under the reference condition.
文摘The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.
文摘Artificial neural network procedures were used to predict the combustible value (i.e. 100-Ash) and combustible recovery of coal flotation concentrate in different operational conditions. The pulp density,pH,rotation rate,coal particle size,dosage of collector,frother and conditioner were used as inputs to the network. Feed-forward artificial neural networks with 5-30-2-1 and 7-10-3-1 arrangements were capable to estimate the combustible value and combustible recovery of coal flotation concentrate respectively as the outputs. Quite satisfactory correlations of 1 and 0.91 in training and testing stages for combustible value and of 1 and 0.95 in training and testing stages for combustible recovery prediction were achieved. The proposed neural network models can be used to determine the most advantageous operational conditions for the expected concentrate assay and recovery in the coal flotation process.
基金supported by the National Natural Science Foundation of China(72071111,71801127,71671091)the NSFC and the UK Royal Society joint project(71811530338)+2 种基金the Special Postdoctoral Fund of China(2019TQ0150)the Fundamental Research Funds for the Central Universities of China(NC2019003)the Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178)。
文摘Effectiveness evaluation of the joint operation system is an important basis for the demonstration and development of weapon equipment.With the consideration that existing models of system effectiveness evaluation seldom describe the structural relationship among equipment clearly as well as reflect the dynamic,the analog-to-digital converter-graphical evaluation and review technique(ADC-GERT)network parameter estimation model is proposed based on the ADC model and the joint operation system structure.Firstly,analysis of the joint operation system structure and operation process is conducted to build the GERT network,where equipment subsystems are nodes and activities are directed arches.Then the mission effectiveness of equipment subsystems is calculated by the ADC model.The probability transfer parameters are modified by the mission effectiveness of equipment subsystems based on the Bayesian theorem,with the ADC-GERT network parameter estimation model constructed.Finally,a case study is used to validate the efficiency and dynamic of the ADC-GERT network parameter estimation model.
文摘The impregnated diamond(ID)bit drilling is one of the main rotary drilling methods in hard rock drilling and it is widely used in mineral exploration,oil and gas exploration,mining,and construction industries.In this study,the quadratic polynomial model in ID bit drilling process was proposed as a function of controllable mechanical operating parameters,such as weight on bit(WOB)and revolutions per minute(RPM).Also,artificial neural networks(ANN)model for predicting the rate of penetration(ROP)was developed using datasets acquired during the drilling operation.The relationships among mechanical operating parameters(WOB and RPM)and ROP in ID bit drilling were analyzed using estimated quadratic polynomial model and trained ANN model.The results show that ROP has an exponential relationship with WOB,whereas ROP has linear relationship with RPM.Finally,the optimal regime of mechanical drilling parameters to achieve high ROP was confirmed using proposed model in combination with rock breaking principal.
基金supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2013BAC06B02)Public Science and Technology Research Funds Projects of Ocean (No.201305027)+2 种基金National Natural Science Foundation of China(No.51877024)Liaoning Scientific Research Project of Department of Education of Liaoning Province(No.LZ2015007)High Level Talent Innovation Project of Dalian(No.2016RQ040)
文摘Matching optimization of resonant parameters among the high power inverters,low power transformers and plasma reactors have significant effects on the performance and output of the reactor array when applying the partitioned operation method.In this paper,the Matlab/Simulink electrical model was established based on the method of partitioned operation.The matching relation between resonant parameters is analyzed on the basis of experimental result.As a consequence,transformer leakage inductance and working frequency are the important parameters influencing the operational efficiency of system,leakage inductance of transformer should be adjusted based on the equivalent capacitance of plasma reactor to realize the matching optimization of resonant parameters.
文摘The operator T from a domain D into the space of measurable functions is called a nonanticipating (causal) operator if the past information is independent from the future outputs. We will study the solution x(t) of a nonlinear operator differential equation where its changes depends on the causal operator T, and semigroup of operator A(t), and all initial parameters (t0, x0) . The initial information is described x(t)=φ(t) for almost all t ≤t0 and φ(t0) =φ0. We will study the nonlinear variation of parameters (NVP) for this type of nonanticipating operator differential equations and develop Alekseev type of NVP.
文摘AIM:To investigate intra-operator variability of semiquantitative perfusion parameters using dynamic contrast-enhanced ultrasonography(DCE-US),following bolus injections of SonoVue.METHODS:The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank.In the in vivo experiments,B16F10 melanoma cells were xenografted to five nude mice.Both in vitro and in vivo,images were acquired following bolus injections of the ultrasound contrast agent SonoVue(Bracco,Milan,Italy) and using a Toshiba Aplio ultrasound scanner connected to a 2.9-5.8 MHz linear transducer(PZT,PLT 604AT probe)(Toshiba,Japan) allowing harmonic imaging("Vascular Recognition Imaging") involving linear raw data.A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute,Villejuif,France and used to evaluate seven perfusion parameters from time-intensity curves.Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation(CV).RESULTS:In vitro,different volumes of SonoVue were tested with the three phantoms:intra-operator variability was found to range from 2.33% to 23.72%.In vivo,experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%.In addition,the area under the curve(AUC) and the area under the wash-out(AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%.CONCLUSION:AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.
文摘This study investigated the effect of fixed height standing-workstation on different people with diverse anthropometry dimensions. Measurements of some anthropometric and physiological parameters are carried out as bases for the calculation of body mass index (BMI) and the determination of the maximum heart rate (HRmax) and aerobic power (VO2max) of individual subject while performing manual cutting operation with hacksaw on fixed vice height of 940 mm. Twenty subjects (S1 to S20) parted 2 mm thick square-pipe of 25 mm × 25 mm. Each subject carried out cutting operation in 5 replicates and their physiological parameters during activities are measured to determine their expended energy (EE) and oxygen consumption rate (VO2). The results showed that subject S4 with BMI of 20.76 kg/m2 has maximum cutting rate of 5.33 stroke/s, while subject S8 with BMI of 23.39 kg/m2 has minimum cutting rate of 0.92 stroke/s. There was a statistically significant effect on the interaction between BMI, EE and Cutting rate, with F = 827.54, P = 0.000, R2 = 0.967 and S = 1.749 units. Subject S11 was discovered to have VO2 (28.54 l/min) and VO2max (24.36 ml/min/kg), with highest value of EE (2.94 kcal/min). Wear rates of 1.86 teeth/s and 9.55 teeth/s have the same energy cost (EE = 0.87 kcal/min) but different cutting time of 36.65 s (S18) and 10.89 s (S20) respectively. This could explain in-part that excess 25.76 s utilized in operation time by subject S18 is responsible for keeping approximately 7.7 teeth intact as regards tool management. EE and Tool Wear Rate in one-way analysis of variance, were statistically significant (F = 45.87, P = 0.000, R2 = 54.69% and S = 1.617 units) at 0.05 level.
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
文摘Objective To evaluate the sensitivity and specificity of body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) measurements in diagnosing abdominal visceral obesity. Methods BMI, WC, and WHR were assessed in 690 Chinese adults (305 men and 385 women) and compared with magnetic resonance imaging (MRI) measurements of abdominal visceral adipose tissue (VA). Receiver operating characteristic (ROC) curves were generated and used to determine the threshold point for each anthropometric parameter. Results 1) MRI showed that 61.7% of overweight/obese individuals (BMI≥25 kg/m2) and 14.2% of normal weight (BMI<25 kg/m2) individuals had abdominal visceral obesity (VA≥100 cm2). 2) VA was positively correlated with each anthropometric variable, of which WC showed the highest correlation (r=0.73-0.77, P<0.001). 3) The best cut-off points for assessing abdominal visceral obesity were as followed: BMI of 26 kg/m2, WC of 90 cm, and WHR of 0.93, with WC being the most sensitive and specific factor. 4) Among subjects with BMI≥28 kg/m2 or WC≥95 cm, 95% of men and 90% of women appeared to have abdominal visceral obesity. Conclusion Measurements of BMI, WC, and WHR can be used in the prediction of abdominal visceral obesity, of which WC was the one with better accuracy.
基金The National Natural Science Foundation of China(No.61273119,61104068,61374038)the Natural Science Foundation of Jiangsu Province(No.BK2011253)
文摘The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.