期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
The role of monocytes in optic nerve injury
1
作者 Xiangxiang Liu Yuan Liu +1 位作者 Mohamed M.Khodeiry Richard K.Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1666-1671,共6页
Monocytes,including monocyte-derived macrophages and resident microglia,mediate many phases of optic nerve injury pathogenesis.Resident microglia respond first,followed by infiltrating macrophages which regulate neuro... Monocytes,including monocyte-derived macrophages and resident microglia,mediate many phases of optic nerve injury pathogenesis.Resident microglia respond first,followed by infiltrating macrophages which regulate neuronal inflammation,cell proliferation and differentiation,scar formation and tissue remodeling following optic nerve injury.However,microglia and macrophages have distinct functions which can be either beneficial or detrimental to the optic nerve depending on the spatial context and temporal sequence of their activity.These divergent effects are attributed to pro-and anti-inflammatory cytokines expressed by monocytes,crosstalk between monocyte and glial cells and even microglia-macrophage communication.In this review,we describe the dynamics and functions of microglia and macrophages in neuronal inflammation and regeneration following optic nerve injury,and their possible role as therapeutic targets for axonal regeneration. 展开更多
关键词 fibrotic scar glial scar INFLAMMATION MACROPHAGE MICROGLIA optic nerve injury REGENERATION
下载PDF
AB006.Longitudinal effects of an optic nerve injury on behavioural measures of visual functions
2
作者 Jacqueline Higgins Jérôme Anton Elvire Vaucher 《Annals of Eye Science》 2019年第1期181-181,共1页
Background:Visual deficits,caused by ocular disease or trauma,can cause lasting damage.However,recent research has focused on neural plasticity as a means to regain visual functions.In order to better understand the i... Background:Visual deficits,caused by ocular disease or trauma,can cause lasting damage.However,recent research has focused on neural plasticity as a means to regain visual functions.In order to better understand the involvement of neural plasticity and reorganization in partial vision restoration,we aim to evaluate the partial recovery of a visual deficit over time using two behavioural tests.In our study,a partial optic nerve crush(pONC)serves as an induced visual deficit,allowing for residual vision from surviving cells.Methods:Visual functions in C57BL/6 mice was measured using two behavioural tests prior to a bilateral pONC,then at various time points after the pONC.In this study,two injury intensities were used:a high intensity pONC with the full force of self-closing forceps,and a low intensity pONC,in which a calibrated space was left between the forceps at the closed position.The two behavioural tests consisted of the optomotor reflex(OMR)and the visual cliff(VC)tests.The OMR test measures the mouse’s tracking reflex in response to moving sinusoidal gratings.The VC test,on the other hand,evaluates exploratory behaviour,by simulating a cliff to observe the animal’s sense of depth perception.After the behavioural evaluation,surviving retinal ganglion cells were counted.Results:The high intensity pONC resulted in a total loss of visual acuity as measured by the OMR test,with no improvement in the following 4 weeks.However,the light intensity pONC showed the same initial loss,but recovery was observed as of day 3,and results in 40-60%recovery after 4 weeks.With the VC test,mice with intact vision will avoid the deep end,opting to spend more time in the shallow end.However,after both high and low intensity pONCs,this preference is no longer observed.Both groups show a return to the shallow end preference at day 14,though the low intensity pONC group showed a stronger preference similar to baseline performance.The percentage of surviving retinal ganglion cells was higher with the low intensity(68%)than with the high intensity(17%)pONC.Conclusions:There is evidence of visual recovery at the behavioural level following a pONC,though very little recovery was observed following a high intensity pONC,and only with the VC test.Therefore,a certain amount of residual retinal input may be required for recovery at the behavioural level. 展开更多
关键词 optic nerve injury PLASTICITY BEHAVIOUR visual function
下载PDF
Selective deletion of zinc transporter 3 in amacrine cells promotes retinal ganglion cell survival and optic nerve regeneration after injury
3
作者 Zhe Liu Jingfei Xue +10 位作者 Canying Liu Jiahui Tang Siting Wu Jicheng Lin Jiaxu Han Qi Zhang Caiqing Wu Haishun Huang Ling Zhao Yehong Zhuo Yiqing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2773-2780,共8页
Vision depends on accurate signal conduction from the retina to the brain through the optic nerve,an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cel... Vision depends on accurate signal conduction from the retina to the brain through the optic nerve,an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cells.The mammalian optic nerve,an important part of the central nervous system,cannot regenerate once it is injured,leading to permanent vision loss.To date,there is no clinical treatment that can regenerate the optic nerve and restore vision.Our previous study found that the mobile zinc(Zn^(2+))level increased rapidly after optic nerve injury in the retina,specifically in the vesicles of the inner plexiform layer.Furthermore,chelating Zn^(2+)significantly promoted axonal regeneration with a long-term effect.In this study,we conditionally knocked out zinc transporter 3(ZnT3)in amacrine cells or retinal ganglion cells to construct two transgenic mouse lines(VGAT^(Cre)ZnT3^(fl/fl)and VGLUT2^(Cre)ZnT3^(fl/fl),respectively).We obtained direct evidence that the rapidly increased mobile Zn^(2+)in response to injury was from amacrine cells.We also found that selective deletion of ZnT3 in amacrine cells promoted retinal ganglion cell survival and axonal regeneration after optic nerve crush injury,improved retinal ganglion cell function,and promoted vision recovery.Sequencing analysis of reginal ganglion cells revealed that inhibiting the release of presynaptic Zn^(2+)affected the transcription of key genes related to the survival of retinal ganglion cells in postsynaptic neurons,regulated the synaptic connection between amacrine cells and retinal ganglion cells,and affected the fate of retinal ganglion cells.These results suggest that amacrine cells release Zn^(2+)to trigger transcriptomic changes related to neuronal growth and survival in reginal ganglion cells,thereby influencing the synaptic plasticity of retinal networks.These results make the theory of zinc-dependent retinal ganglion cell death more accurate and complete and provide new insights into the complex interactions between retinal cell networks. 展开更多
关键词 axonal regeneration conditional knockout NEUROTRANSMITTER optic nerve injury presynaptic neuron retinal network synaptic connection synaptic vesicles visual acuity zinc transporter 3
下载PDF
Correlation between photoreceptor injury-regeneration and behavior in a zebrafish model 被引量:1
4
作者 Ya-jie Wang Shi-jiao Cai +3 位作者 Jian-lin Cui Yang Chen Xin Tang Yu-hao Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第5期795-803,共9页
Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few st... Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few studies examining retinal injury due to intensive light stimulation at the cellular level. Neural network arrangements and gene expression patterns in zebrafish photoreceptors are similar to those observed in humans, and photoreceptor injury in zebrafish can induce stem cell-based cellular regeneration. Therefore, the zebrafish retina is considered a useful model for studying photoreceptor injury in humans. In the current study, the central retinal photoreceptors of zebrafish were selectively ablated by stimulation with high-intensity light. Retinal injury, cell proliferation and regeneration of cones and rods were assessed at 1, 3 and 7 days post lesion with immunohistochemistry and in situ hybridization. Additionally, a light/dark box test was used to assess zebrafish behavior. The results revealed that photoreceptors were regenerated by 7 days after the light-induced injury. However, the regenerated cells showed a disrupted arrangement at the lesion site. During the injury-regeneration process, the zebrafish exhibited reduced locomotor capacity, weakened phototaxis and increased movement angular velocity. These behaviors matched the morphological changes of retinal injury and regeneration in a number of ways. This study demonstrates that the zebrafish retina has a robust capacity for regeneration. Visual impairment and stress responses following high-intensity light stimulation appear to contribute to the alteration of behaviors. 展开更多
关键词 nerve regeneration optic nerve injury light injury photoreceptor cell cell proliferation retinal regeneration light/dark test BEHAVIOR ZEBRAFISH PHOTOTAXIS immunohistochemistry in situ hybridization neural regeneration
下载PDF
Siponimod exerts neuroprotective effects on the retina and higher visual pathway through neuronal S1PR1 in experimental glaucoma
5
作者 Devaraj Basavarajappa Vivek Gupta +7 位作者 Nitin Chitranshi Roshana Vander Wall Rashi Rajput Kanishka Pushpitha Samridhi Sharma Mehdi Mirzaei Alexander Klistorner Stuart L.Graham 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期840-848,共9页
Sphingosine-1-phosphate receptor(S1PR)signaling regulates diverse pathophysiological processes in the central nervous system.The role of S1PR signaling in neurodegenerative conditions is still largely unidentified.Sip... Sphingosine-1-phosphate receptor(S1PR)signaling regulates diverse pathophysiological processes in the central nervous system.The role of S1PR signaling in neurodegenerative conditions is still largely unidentified.Siponimod is a specific modulator of S1P1 and S1P5 receptors,an immunosuppressant drug for managing secondary progressive multiple sclerosis.We investigated its neuroprotective properties in vivo on the retina and the brain in an optic nerve injury model induced by a chronic increase in intraocular pressure or acute N-methyl-D-aspartate excitotoxicity.Neuronal-specific deletion of sphingosine-1-phosphate receptor(S1PR1)was carried out by expressing AAV-PHP.eB-Cre recombinase under Syn1 promoter in S1PR1mice to define the role of S1PR1 in neurons.Inner retinal electrophysiological responses,along with histological and immunofluorescence analysis of the retina and optic nerve tissues,indicated significant neuroprotective effects of siponimod when administered orally via diet in chronic and acute optic nerve injury models.Further,siponimod treatment showed significant protection against trans-neuronal degenerative changes in the higher visual center of the brain induced by optic nerve injury.Siponimod treatment also reduced microglial activation and reactive gliosis along the visual pathway.Our results showed that siponimod markedly upregulated neuroprotective Akt and Erk1/2 activation in the retina and the brain.Neuronal-specific deletion of S1PR1 enhanced retinal and dorsolateral geniculate nucleus degenerative changes in a chronic optic nerve injury condition and attenuated protective effects of siponimod.In summary,our data demonstrated that S1PR1signaling plays a vital role in the retinal ganglion cell and dorsolateral geniculate nucleus neuronal survival in experimental glaucoma,and siponimod exerts direct neuroprotective effects through S1PR1 in neurons in the central nervous system independent of its peripheral immuno-modulatory effects.Our findings suggest that neuronal S1PR1 is a neuroprotective therapeutic target and its modulation by siponimod has positive implications in glaucoma conditions. 展开更多
关键词 GLAUCOMA intraocular pressure NEURODEGENERATION NEUROPROTECTION optic nerve injury retinal ganglion cells siponimod sphingosine-1-phosphate
下载PDF
Growth hormone-releasing hormone receptor signaling in experimental ocular inflammation and neuroprotection 被引量:1
6
作者 Ling-Ping Cen Tsz Kin Ng +1 位作者 Wai Kit Chu Chi Pui Pang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2643-2648,共6页
Both inflammation and anti-inflammation are involved in the protection of retinal cells.Antagonists of the hypothalamic growth hormone-releasing hormone receptor(GHRHR)have been shown to possess potent anti-inflammato... Both inflammation and anti-inflammation are involved in the protection of retinal cells.Antagonists of the hypothalamic growth hormone-releasing hormone receptor(GHRHR)have been shown to possess potent anti-inflammatory properties in experimental disease models of various organs,some with systemic complications.Such effects are also found in ocular inflammatory and neurologic injury studies.In experimental models of mice and rats,both growth hormone-releasing hormone receptor agonists and antagonists may alleviate death of ocular neural cells under certain experimental conditions.This review explores the properties of growth hormone-releasing hormone receptor agonists and antagonists that lead to its protection against inflammatory responses induced by extrinsic agents or neurologic injures in ocular animal models. 展开更多
关键词 NEUROPROTECTION ocular inflammation optic nerve injury retinal ganglion cells UVEITIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部