The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructi...The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructing and discussing PIDeCM’s. a class of parallel one-leg methods is also investigated, which are of particular efficiency for linear systems.展开更多
In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the resid...In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error correction due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Residue Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue scaling can be performed in parallel for any combination of moduli set members without using lookup tables.展开更多
In artificial intelligence(AI)based-complex power system management and control technology,one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution.However,there is,...In artificial intelligence(AI)based-complex power system management and control technology,one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution.However,there is,currently,nearly no standard technical framework for objective and quantitative intelligence evaluation.In this article,based on a parallel system framework,a method is established to objectively and quantitatively assess the intelligence level of an AI agent for active power corrective control of modern power systems,by resorting to human intelligence evaluation theories.On this basis,this article puts forward an AI self-evolution method based on intelligence assessment through embedding a quantitative intelligence assessment method into automated reinforcement learning(AutoRL)systems.A parallel system based quantitative assessment and self-evolution(PLASE)system for power grid corrective control AI is thereby constructed,taking Bayesian Optimization as the measure of AI evolution to fulfill autonomous evolution of AI under guidance of their intelligence assessment results.Experiment results exemplified in the power grid corrective control AI agent show the PLASE system can reliably and quantitatively assess the intelligence level of the power grid corrective control agent,and it could promote evolution of the power grid corrective control agent under guidance of intelligence assessment results,effectively,as well as intuitively improving its intelligence level through selfevolution.展开更多
Describes a new architecture of a parallel robot with six degrees of freedom and focuses on improving orientation accuracy of movable platform in mechanism, error correction and control methods. A set of formulations ...Describes a new architecture of a parallel robot with six degrees of freedom and focuses on improving orientation accuracy of movable platform in mechanism, error correction and control methods. A set of formulations about inverse kinematics, Jacobin matrix, and forward kinematics for the high precision 6-HTRT parallel robots is presented. The analysis of errors existing in the manipulator is discussed and a novel approach for error correction is advanced. By DSP technique, inverse kinematics is solved in real time conditions with high precision and the hardware control system is given. The experimental results demonstrate the effectiveness of the proposed technique.展开更多
3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-p...3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-parallel machine tool. 3-PRS serial-parallel machine tool was researched, and the mechanism of error analysis, modeling, identification of error parameters and measurement equipment for the use of agency error of measurement were conducted. In order to achieve the geometric parameters calibration and error compensation of the serial-parallel machine tool, the nominal structural parameters of the controller was adjusted by identifying the structure of the machine tool. With the establishment of a vector space size chain, we can do the error analysis, error modeling, error measurement and error compensation can be done.展开更多
One way to solve the problem of measurement precision caused by deformity for thermal expansion, friction and load etc is to use an inertial sensor to measure a change in the length of the rod on a parallel machine. H...One way to solve the problem of measurement precision caused by deformity for thermal expansion, friction and load etc is to use an inertial sensor to measure a change in the length of the rod on a parallel machine. However, the characteristic of dynamic measurement in the inertial sensing system and the effects of the machine's working environment, bias error, misalignment and wide band random noise in inertial measurement data results in the in-accuracy of system measurement. Therefore, on the basis of the measurement system a new inertial sensing system is proposed; the drifting of error is restrained with a method of inertial error correction and the system's position and the velocity state variables are predicted by the data fusion. After measuring the whole 300mm movement in an experiment, the analyses of the experimental result showed that the application of the new inertial sensing system can improve the positional accuracy about 61% and the movement precision more than 20%. Measurement results also showed that the application of the new inertial sensing system for dynamic measurement was a feasible method to improve the machine's dynamic positioning precision. And with the further improvement of the low-cost solid-stateacceleramenter technology, the application of the machine can take a higher position and make the speed dynamic accuracy possible.展开更多
An error tolerant hardware efficient verylarge scale integration (VLSI) architecture for bitparallel systolic multiplication over dual base, which canbe pipelined, is presented. Since this architecture has thefeatur...An error tolerant hardware efficient verylarge scale integration (VLSI) architecture for bitparallel systolic multiplication over dual base, which canbe pipelined, is presented. Since this architecture has thefeatures of regularity, modularity and unidirectionaldata flow, this structure is well suited to VLSIimplementations. The length of the largest delay pathand area of this architecture are less compared to the bitparallel systolic multiplication architectures reportedearlier. The architecture is implemented using Austria Micro System's 0.35 μm CMOS (complementary metaloxide semiconductor) technology. This architecture canalso operate over both the dual-base and polynomialbase.展开更多
文摘The parallel algorithms of iterated defect correction methods (PIDeCM’s) are constructed, which are of efficiency and high order B-convergence for general nonlinear stiff systems in ODE’S. As the basis of constructing and discussing PIDeCM’s. a class of parallel one-leg methods is also investigated, which are of particular efficiency for linear systems.
文摘In this paper, we present two new algorithms in residue number systems for scaling and error correction. The first algorithm is the Cyclic Property of Residue-Digit Difference (CPRDD). It is used to speed up the residue multiple error correction due to its parallel processes. The second is called the Target Race Distance (TRD). It is used to speed up residue scaling. Both of these two algorithms are used without the need for Mixed Radix Conversion (MRC) or Chinese Residue Theorem (CRT) techniques, which are time consuming and require hardware complexity. Furthermore, the residue scaling can be performed in parallel for any combination of moduli set members without using lookup tables.
基金supported by the National Key R&D Program of China[grant number 2018AAA0101504]。
文摘In artificial intelligence(AI)based-complex power system management and control technology,one of the urgent tasks is to evaluate AI intelligence and invent a way of autonomous intelligence evolution.However,there is,currently,nearly no standard technical framework for objective and quantitative intelligence evaluation.In this article,based on a parallel system framework,a method is established to objectively and quantitatively assess the intelligence level of an AI agent for active power corrective control of modern power systems,by resorting to human intelligence evaluation theories.On this basis,this article puts forward an AI self-evolution method based on intelligence assessment through embedding a quantitative intelligence assessment method into automated reinforcement learning(AutoRL)systems.A parallel system based quantitative assessment and self-evolution(PLASE)system for power grid corrective control AI is thereby constructed,taking Bayesian Optimization as the measure of AI evolution to fulfill autonomous evolution of AI under guidance of their intelligence assessment results.Experiment results exemplified in the power grid corrective control AI agent show the PLASE system can reliably and quantitatively assess the intelligence level of the power grid corrective control agent,and it could promote evolution of the power grid corrective control agent under guidance of intelligence assessment results,effectively,as well as intuitively improving its intelligence level through selfevolution.
文摘Describes a new architecture of a parallel robot with six degrees of freedom and focuses on improving orientation accuracy of movable platform in mechanism, error correction and control methods. A set of formulations about inverse kinematics, Jacobin matrix, and forward kinematics for the high precision 6-HTRT parallel robots is presented. The analysis of errors existing in the manipulator is discussed and a novel approach for error correction is advanced. By DSP technique, inverse kinematics is solved in real time conditions with high precision and the hardware control system is given. The experimental results demonstrate the effectiveness of the proposed technique.
基金supported by Program for New Century Excellent Talents in University of Henan Province (GrantNo, 2006HANCET-16)program for The Fund of Henan Polytechnic University Postgraduate’s Innovative Papers (Grant No, 644013)program for Young Talents of Henan Polytechnic University (Grant No,649035)
文摘3-PRS serial-parallel machine tool consists of a 3-degree-of-freedom (DOF) implementation platform and a 2-DOF X-Y platform. The error modeling and parameter identification methods were deduced based on 3-PRS serial-parallel machine tool. 3-PRS serial-parallel machine tool was researched, and the mechanism of error analysis, modeling, identification of error parameters and measurement equipment for the use of agency error of measurement were conducted. In order to achieve the geometric parameters calibration and error compensation of the serial-parallel machine tool, the nominal structural parameters of the controller was adjusted by identifying the structure of the machine tool. With the establishment of a vector space size chain, we can do the error analysis, error modeling, error measurement and error compensation can be done.
基金supported by the Natural Sciences Foundation of China under Grant No.50772095Jiangsu Provincial Education Bureau under Grant No.JK0310066
文摘One way to solve the problem of measurement precision caused by deformity for thermal expansion, friction and load etc is to use an inertial sensor to measure a change in the length of the rod on a parallel machine. However, the characteristic of dynamic measurement in the inertial sensing system and the effects of the machine's working environment, bias error, misalignment and wide band random noise in inertial measurement data results in the in-accuracy of system measurement. Therefore, on the basis of the measurement system a new inertial sensing system is proposed; the drifting of error is restrained with a method of inertial error correction and the system's position and the velocity state variables are predicted by the data fusion. After measuring the whole 300mm movement in an experiment, the analyses of the experimental result showed that the application of the new inertial sensing system can improve the positional accuracy about 61% and the movement precision more than 20%. Measurement results also showed that the application of the new inertial sensing system for dynamic measurement was a feasible method to improve the machine's dynamic positioning precision. And with the further improvement of the low-cost solid-stateacceleramenter technology, the application of the machine can take a higher position and make the speed dynamic accuracy possible.
文摘An error tolerant hardware efficient verylarge scale integration (VLSI) architecture for bitparallel systolic multiplication over dual base, which canbe pipelined, is presented. Since this architecture has thefeatures of regularity, modularity and unidirectionaldata flow, this structure is well suited to VLSIimplementations. The length of the largest delay pathand area of this architecture are less compared to the bitparallel systolic multiplication architectures reportedearlier. The architecture is implemented using Austria Micro System's 0.35 μm CMOS (complementary metaloxide semiconductor) technology. This architecture canalso operate over both the dual-base and polynomialbase.