期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Optimization Design of Fairings for VIV Suppression Based on Data-Driven Models and Genetic Algorithm 被引量:1
1
作者 LIU Xiu-quan JIANG Yong +3 位作者 LIU Fu-lai LIU Zhao-wei CHANG Yuan-jiang CHEN Guo-ming 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期153-158,共6页
Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be... Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design. 展开更多
关键词 optimization design vortex induced vibration suppression devices data-driven models BP neural network genetic algorithm
下载PDF
Optimization Design of McPherson Suspension Steering System Based on R-W Method
2
作者 卞学良 马国清 王志强 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期144-149,共6页
The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equ... The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equations were educed.The optimization model of McPherson suspension steering mechanism was founded by regarding the McPherson suspension and steering system as an integrated system.In order to gain the best optimization effect,a continuous weighting function was created according to the requirement of steering system performance.Taking example for TJ7136U,the optimization design of McPherson suspension steering system was conducted in this paper. 展开更多
关键词 MECHANICS R-W method McPherson suspension optimization design weighting function
下载PDF
Optimization Design of an Embedded Multi-Cell Thin-Walled Energy Absorption Structures with Local Surface Nanocrystallization
3
作者 Kang Xu Tong Li +3 位作者 Gaofei Guan Jianlong Qu Zhen Zhao Xinsheng Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期987-1002,共16页
Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza... Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices. 展开更多
关键词 Local surface nanocrystallization EMC model assembled thin-walled energy absorption structures optimization design specific energy absorption
下载PDF
Optimization design of two-stage amplification micro-drive system without additional motion based on particle swarm optimization algorithm
4
作者 Manzhi Yang Kaiyang Wei +4 位作者 Chuanwei Zhang Dandan Liu Yizhi Yang Feiyan Han Shuanfeng Zhao 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期340-351,共12页
With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification mi... With the increasing requirements of precision mechanical systems in electronic packaging,ultra-precision machining,biomedicine and other high-tech fields,it is necessary to study a precision two-stage amplification micro-drive system that can safely provide high precision and a large amplification ratio.In view of the disadvantages of the current two-stage amplification and micro-drive system,such as poor security,low motion accuracy and limited amplification ratio,an optimization design of a precise symmetrical two-stage amplification micro-drive system was completed in this study,and its related performance was studied.Based on the guiding principle of the flexure hinge,a two-stage amplification micro-drive mechanism with no parasitic motion or non-motion direction force was designed.In addition,the structure optimization design of the mechanism was completed using the particle swarm optimization algorithm,which increased the amplification ratio of the mechanism from 5 to 18 times.A precise symmetrical two-stage amplification system was designed using a piezoelectric ceramic actuator and two-stage amplification micro-drive mechanism as the micro-driver and actuator,respectively.The driving,strength,and motion performances of the system were subsequently studied.The results showed that the driving linearity of the system was high,the strength satisfied the design requirements,the motion amplification ratio was high and the motion accuracy was high(relative error was 5.31%).The research in this study can promote the optimization of micro-drive systems. 展开更多
关键词 Particle swarm optimization Micro-drive mechanism Two-stage amplification optimization design Performance of guidance
下载PDF
Influence of the Hook Position on the Vertical Vibrations of an Automobile Exhaust System:Application of the Robust Optimization Design
5
作者 Jianqiang Xiong 《Fluid Dynamics & Materials Processing》 EI 2021年第3期555-567,共13页
A robust optimization design method is proposed to investigate the influence of the hook position on the vertical vibration(bending)of an automobile exhaust system.A block diagram for the robustness analysis of the ex... A robust optimization design method is proposed to investigate the influence of the hook position on the vertical vibration(bending)of an automobile exhaust system.A block diagram for the robustness analysis of the exhaust system is initially constructed from the major affecting factors.Secondly,the second-order inertia force is set as the vibration excitation source of the exhaust system and the displacement of four hooks of the exhaust system is selected as the variable factor.Then tests are carried out to investigate the resulting vertical bending considering four influencing factors and three levels of analysis.Finally,a variance analysis of the vertical bending is performed.The present study provides a set of guidelines to control the key factors affecting the vibration of vehicle exhaust systems while proposing an effective method to reduce vehicle vibration and improve noise analysis。 展开更多
关键词 Robust optimization design exhaust system modal analysis excitation source
下载PDF
Emergency Optimization Design of Living Room of High-rise Residence Based on Major Public Health Emergencies
6
作者 REN Hongguo HONG Guangchao 《Journal of Landscape Research》 2022年第3期13-16,共4页
When a major public health emergency comes,people are forced to be isolated at home.During the period of residential isolation by epidemic,use of indoor space in high-rise residential buildings puts forward higher req... When a major public health emergency comes,people are forced to be isolated at home.During the period of residential isolation by epidemic,use of indoor space in high-rise residential buildings puts forward higher requirements for the health and variability of indoor space in addition to meeting the basic living needs.By analyzing the current situation and characteristics of living room space design of high-rise residence,combined with basic health protection awareness of residents and environmental sanitation requirements,this paper explores the basic functions of living room space design,and puts forward suggestions on space optimization design. 展开更多
关键词 Major public health emergencies Living room Emergency optimization design
下载PDF
Multi-objective reliability optimization design of high-speed heavy-duty gears based on APCK-SORA model
7
作者 Zhenliang YU Shuo WANG +1 位作者 Fengqin ZHAO Chenyuan LI 《Mechanical Engineering Science》 2022年第2期49-56,I0006,共9页
For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization... For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears. 展开更多
关键词 APCK-SORA model high-speed heavy-duty gears multi-objective reliability optimization design k-means clustering method
下载PDF
Structural optimization design of semi-rigid base asphalt pavement using modulus matching criterion and multi-indicator range analysis
8
作者 Zhihao Yang Linbing Wang +2 位作者 Dongwei Cao Yinghao Miao Hailu Yang 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2024年第1期131-159,共29页
Damage to semi-rigid base asphalt pavement is related to improper matching of the pavement structure moduli.This study mainly focused on the modulus matching of structural layers and the development of a pavement stru... Damage to semi-rigid base asphalt pavement is related to improper matching of the pavement structure moduli.This study mainly focused on the modulus matching of structural layers and the development of a pavement structure optimization method.First,the modulus loss of existing pavement structures was analysed,and a three-dimensional finite element model was established based on the existing pavement.Second,the influence of the modulus of each structural layer on the mechanical response indicators and fatigue life was analysed.Based on the results,a pavement structure design method using the smoothness of the stress-strain curve as the modulus matching criterion of the structural layers was proposed.And it was found that a strain convex point was present and that the stress mutation between the structural layers was significant when the modulus matching of the pavement structure was reasonable.Further,the evaluation indicators were divided into two groups,namely,mechanical indicators and fatigue life indicators.And it was proposed an optimized pavement structure design method based on modulus matching and multi-indicator range analysis.Finally,the optimal modulus combination of pavement structure was determined by this method.The research systematically studied the influence of the modulus of each structural layer on the mechanical response and fatigue life of the pavement,and proposed the concept and specific executive criteria of modulus matching for the first time.Meanwhile,it also provided an effective optimization method for pavement structure design. 展开更多
关键词 Stress-strain curve Modulus matching Structural optimization design Multi-indicator range analysis Fatigue life
原文传递
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design
9
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique optimization design
下载PDF
A Hybrid Level Set Optimization Design Method of Functionally Graded Cellular Structures Considering Connectivity
10
作者 Yan Dong Kang Zhao +1 位作者 Liang Gao Hao Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1-18,共18页
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr... With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures. 展开更多
关键词 Hybrid level set method functionally graded cellular structure connectivity interpolated transition optimization design
下载PDF
Multi-Stage Multidisciplinary Design Optimization Method for Enhancing Complete Artillery Internal Ballistic Firing Performance
11
作者 Jipeng Xie Guolai Yang +1 位作者 Liqun Wang Lei Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期793-819,共27页
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ... To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method. 展开更多
关键词 ARTILLERY internal ballistics dynamics multi-stage optimization multi-disciplinary design optimization collaborative optimization
下载PDF
Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures
12
作者 Xue-Qin Li Lu-Kai Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期665-684,共20页
Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ... Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures. 展开更多
关键词 Random forest reliability-based design optimization ensemble learning machine learning
下载PDF
Reliability-based life-cycle cost seismic design optimization of coastal bridge piers with nonuniform corrosion using different materials
13
作者 Wu Xiangtong Yuan Wenting Guo Anxin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期209-225,共17页
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun... Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design. 展开更多
关键词 reliability-based design optimization(RBDO) life-cycle cost(LCC) nonuniform corrosion coastal bridge pier REPAIR
下载PDF
Optimization design of anti-seismic engineering measures for intake tower based on non-dominated sorting genetic algorithm-Ⅱ
14
作者 Jia’ao YU Zhenzhong SHEN +1 位作者 Zhangxin HUANG Haoxuan LI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第9期1428-1441,共14页
High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An int... High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An intake tower in northwest China was considered the research object,and its natural vibration characteristics and dynamic response were first analyzed using the mode decomposition response spectrum method based on a three-dimensional finite element model.The non-dominated sorting genetic algorithm-II(NSGA-II)was adopted to optimize the anti-seismic scheme combination by comprehensively considering the dynamic tower response and variable project cost.Finally,the rationality of the original intake tower antiseismic design scheme was evaluated according to the obtained optimal solution set,and recommendations for improvement were proposed.The method adopted in this study may provide significant references for designing anti-seismic measures for high-rise structures such as intake towers located in high-intensity earthquake areas. 展开更多
关键词 intake tower NSGA-II mode decomposition response spectrum method anti-seismic engineering measures optimization design variable project cost
原文传递
The application of optimization design in stomatology: A literature review
15
作者 Bochun Mao Yajing Tian +3 位作者 Chengxin Wang Dawei Liu Yanheng Zhou Jing Li 《Medicine in Novel Technology and Devices》 2023年第3期9-15,共7页
This literature review aims to determine the applications of optimization design in the field of stomatology,to investigate its current usages,methods and benefits.This review was performed following the Preferred Rep... This literature review aims to determine the applications of optimization design in the field of stomatology,to investigate its current usages,methods and benefits.This review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews(PRISMA-ScR)guidelines.The electronic literature search was performed through MEDLINE,Scopus,Web of Science databases with a 10-year time restriction:January 2012 till April 2022.Abundant studies focused on optimization design of dental implants,maxillofacial surgery fixation plates or implants,prosthodontics were published.Shape optimization has been commonly used in implant prostheses,and various studies have proved it to be an effective method to improve initial stability and reduce maximum stress.Shape optimization and topology optimization have been widely used in maxillofacial surgery to reduce strain,volume,and weight of internal fixation plates or bone block implants.The lack of further in vivo and in invitro tests is one of the main limitations of current published studies. 展开更多
关键词 optimization design Topology optimization STOMATOLOGY REVIEW
下载PDF
Aerodynamic/stealth design of S-duct inlet based on discrete adjoint method
16
作者 Jun DENG Ke ZHAO +4 位作者 Lin ZHOU Wei ZHANG Bowen SHU Jiangtao HUANG Zhenghong GAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期725-746,共22页
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ... It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system. 展开更多
关键词 S-duct inlet aerodynamic/stealth optimization design discrete adjoint upwind scheme multilevel fast multipole algorithm(MLFMA)
下载PDF
Review of Design and Control Optimization of Axial Flux PMSM in Renewable-energy Applications
17
作者 Jianfei Zhao Xiaoying Liu +1 位作者 Shuang Wang Lixiao Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期29-49,共21页
Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating effi... Axial flux permanent magnet synchronous motors(AFPMSMs)have been widely used in wind-power generation,electric vehicles,aircraft,and other renewable-energy applications owing to their high power density,operating efficiency,and integrability.To facilitate comprehensive research on AFPMSM,this article reviews the developments in the research on the design and control optimization of AFPMSMs.First,the basic topologies of AFPMSMs are introduced and classified.Second,the key points of the design optimization of core and coreless AFPMSMs are summarized from the aspects of parameter design,structure design,and material optimization.Third,because efficiency improvement is an issue that needs to be addressed when AFPMSMs are applied to electric or other vehicles,the development status of efficiency-optimization control strategies is reviewed.Moreover,control strategies proposed to suppress torque ripple caused by the small inductance of disc coreless permanent magnet synchronous motors(DCPMSMs)are summarized.An overview of the rotor-synchronization control strategies for disc contra-rotating permanent magnet synchronous motors(CRPMSMs)is presented.Finally,the current difficulties and development trends revealed in this review are discussed. 展开更多
关键词 AFPMSM design optimization Cogging torque Efficiency optimization Control strategy optimization
下载PDF
An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation
18
作者 Yongqiang Guo Zhiyuan Lv 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1855-1870,共16页
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of... In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method. 展开更多
关键词 Reliability-based multidisciplinary design optimization moment method saddlepoint approximate sequence optimization and reliability assessment performance measure approach
下载PDF
A Full Simulation Study for the Design Optimization of Open-Graded Pavement
19
作者 Andrea Umiliaco 《Journal of Civil Engineering and Architecture》 2023年第12期621-629,共9页
Water trapped within the HMA(Hot Mix Asphalt)layers of a flexible pavement causes the loss of strength and durability of the material producing surface damages and deteriorations such as stripping and ravelling.Open-g... Water trapped within the HMA(Hot Mix Asphalt)layers of a flexible pavement causes the loss of strength and durability of the material producing surface damages and deteriorations such as stripping and ravelling.Open-graded pavements are considered potentially to be effective solutions to avoid these forms of infiltration-related distress.The main property that influences the performance of HMA is the hydraulic permeability.The permeability is a function of several properties of HMA which make the process of mix design very complex and uncertain.In this paper,starting from different grading curves,we evaluate the dependence of the permeability by the size distribution of aggregates using a full numerical model that has yet been validated through experimental tests and theoretical calculations.The correlation between the grain size distributions and the hydraulic permeability is very useful in order to simplify and optimize the design of open-graded pavements. 展开更多
关键词 SIMULATION design optimization PAVEMENT
下载PDF
An Efficient Reliability-Based Optimization Method Utilizing High-Dimensional Model Representation and Weight-Point Estimation Method
20
作者 Xiaoyi Wang Xinyue Chang +2 位作者 Wenxuan Wang Zijie Qiao Feng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1775-1796,共22页
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi... The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method. 展开更多
关键词 Reliability-based design optimization high-dimensional model decomposition point estimation method Lagrange interpolation aviation hydraulic piping system
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部