期刊文献+
共找到14,913篇文章
< 1 2 250 >
每页显示 20 50 100
Optimized sequential therapy vs 10- and 14-d concomitant therapy for eradicating Helicobacter pylori: A randomized clinical trial 被引量:1
1
作者 Hassan Seddik Jihane Benass +3 位作者 Sanaa Berrag Asmae Sair Reda Berraida Hanae Boutallaka 《World Journal of Gastroenterology》 SCIE CAS 2024年第6期556-564,共9页
BACKGROUND A cure for Helicobacter pylori(H.pylori)remains a problem of global concern.The prevalence of antimicrobial resistance is widely rising and becoming a challenging issue worldwide.Optimizing sequential thera... BACKGROUND A cure for Helicobacter pylori(H.pylori)remains a problem of global concern.The prevalence of antimicrobial resistance is widely rising and becoming a challenging issue worldwide.Optimizing sequential therapy seems to be one of the most attractive strategies in terms of efficacy,tolerability and cost.The most common sequential therapy consists of a dual therapy[proton-pump inhibitors(PPIs)and amoxicillin]for the first period(5 to 7 d),followed by a triple therapy for the second period(PPI,clarithromycin and metronidazole).PPIs play a key role in maintaining a gastric pH at a level that allows an optimal efficacy of antibiotics,hence the idea of using new generation molecules.This open-label prospective study randomized 328 patients with confirmed H.pylori infection into three groups(1:1:1):The first group received quadruple therapy consisting of twice-daily(bid)omeprazole 20 mg,amoxicillin 1 g,clarith-romycin 500 mg and metronidazole 500 mg for 10 d(QT-10),the second group received a 14 d quadruple therapy following the same regimen(QT-14),and the third group received an optimized sequential therapy consisting of bid rabe-prazole 20 mg plus amoxicillin 1 g for 7 d,followed by bid rabeprazole 20 mg,clarithromycin 500 mg and metronidazole 500 mg for the next 7 d(OST-14).AEs were recorded throughout the study,and the H.pylori eradication rate was determined 4 to 6 wk after the end of treatment,using the 13C urea breath test.RESULTS In the intention-to-treat and per-protocol analysis,the eradication rate was higher in the OST-14 group compared to the QT-10 group:(93.5%,85.5%P=0.04)and(96.2%,89.5%P=0.03)respectively.However,there was no statist-ically significant difference in eradication rates between the OST-14 and QT-14 groups:(93.5%,91.8%P=0.34)and(96.2%,94.4%P=0.35),respectively.The overall incidence of AEs was significantly lower in the OST-14 group(P=0.01).Furthermore,OST-14 was the most cost-effective among the three groups.CONCLUSION The optimized 14-d sequential therapy is a safe and effective alternative.Its eradication rate is comparable to that of the 14-d concomitant therapy while causing fewer AEs and allowing a gain in terms of cost. 展开更多
关键词 Helicobacter pylori Quadruple therapy SEQUENTIAL Proton-pump inhibitor OPTIMIZATION
下载PDF
An Optimized System of Random Forest Model by Global Harmony Search with Generalized Opposition-Based Learning for Forecasting TBM Advance Rate
2
作者 Yingui Qiu Shuai Huang +3 位作者 Danial Jahed Armaghani Biswajeet Pradhan Annan Zhou Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2873-2897,共25页
As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance le... As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance. 展开更多
关键词 Tunnel boring machine random forest GOGHS optimization PSO optimization GA optimization ABC optimization SHAP
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
3
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
4
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 Random forest regression model pile drivability Bayesian optimization particle swarm optimization
下载PDF
A Survey on Type-3 Fuzzy Logic Systems and Their Control Applications
5
作者 Oscar Castillo Fevrier Valdez +1 位作者 Patricia Melin Weiping Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1744-1756,共13页
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz... In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc. 展开更多
关键词 Applications control systems optimization REVIEW type-3 fuzzy logic.
下载PDF
Optimal scheduling of a township integrated-energy system using the adjustable heat-electricity ratio model
6
作者 Quan Chen Jingyi Wang +4 位作者 Min Cang Xiaomeng Zhai Xi Cheng Shuang Wu Dongwei Li 《Global Energy Interconnection》 EI CSCD 2024年第1期48-60,共13页
With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconne... With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconnection and interaction of multiple energy sources are developing rapidly.Biomass energy,a renewable green energy source with low pollution and wide distribution,has significant application potential in integrated energy systems.Considering the application of biomass energy in townships,this study established an integrated biomass energy system and proposed a model to optimize its operation.Lowest economic cost and highest clean energy utilization rate were considered as the objective functions.In addition,a plan was suggested to adjust the heat-electricity ratio based on the characteristics of the combined heat and power of the biomass.Finally,a simulation analysis conducted for a town in China was discussed,demonstrating that the construction of a township integrated-energy system and the use of biomass can significantly reduce operating costs and improve the energy utilization rate.Moreover,by adjusting the heat-electricity ratio,the economic cost was further reduced by 6.70%,whereas the clean energy utilization rate was increased by 5.14%. 展开更多
关键词 Biomass energy Integrated-energy system Afterburning device Heat-electricity ratio Operation optimization
下载PDF
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
7
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 Cropping system Water-saving irrigation North China Plain Nitrogen optimization Sustainable intensification
下载PDF
Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau,China
8
作者 Qilong Song Jie Zhang +3 位作者 Fangfang Zhang Yufang Shen Shanchao Yue Shiqing Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1671-1684,共14页
Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the ef... Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau. 展开更多
关键词 maize yield N management economic optimal N rate Loess Plateau
下载PDF
Optimal decision-making method for equipment maintenance to enhance the resilience of power digital twin system under extreme disaster
9
作者 Song Gao Wei Wang +2 位作者 Jingyi Chen Xinyu Wu Junyan Shao 《Global Energy Interconnection》 EI CSCD 2024年第3期336-346,共11页
Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ... Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms. 展开更多
关键词 Phasor measurement units Through-sequence optimization Resilience enhancement Communication networks Digital twins
下载PDF
Gradient Optimizer Algorithm with Hybrid Deep Learning Based Failure Detection and Classification in the Industrial Environment
10
作者 Mohamed Zarouan Ibrahim M.Mehedi +1 位作者 Shaikh Abdul Latif Md.Masud Rana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1341-1364,共24页
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu... Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects. 展开更多
关键词 Fault detection Industry 4.0 gradient optimizer algorithm deep learning rotating machineries artificial intelligence
下载PDF
Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence
11
作者 Ali Hamid Farea Omar H.Alhazmi Kerem Kucuk 《Computers, Materials & Continua》 SCIE EI 2024年第2期1525-1545,共21页
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),... While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features. 展开更多
关键词 Internet of Things SECURITY anomaly detection and prevention system artificial intelligence optimization techniques
下载PDF
Optimized scheduling of integrated energy systems for low carbon economy considering carbon transaction costs
12
作者 Chao Liu Weiru Wang +2 位作者 Jing Li Xinyuan Liu Yongning Chi 《Global Energy Interconnection》 EI CSCD 2024年第4期377-390,共14页
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st... With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits. 展开更多
关键词 Demand response Combined cooling Heating and power system Carbon transaction costs Flexible electric and thermal loads Optimal scheduling
下载PDF
Exploring the impact of high density planting system and deficit irrigation in cotton(Gossypium hirsutum L.):a comprehensive review
13
作者 MANIBHARATHI Sekar SOMASUNDARAM Selvaraj +3 位作者 PARASURAMAN Panneerselvam SUBRAMANIAN Alagesan RAVICHANDRAN Veerasamy MANIKANDA BOOPATHI Narayanan 《Journal of Cotton Research》 CAS 2024年第3期302-317,共16页
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere... Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems. 展开更多
关键词 Deficit irrigation High density planting system Ultra narrow row Cost saving Mechanical harvesting Yield optimization
下载PDF
Systematic Review on Critical Factors and Their Optimization for Solar Cell Performance Enhancement
14
作者 Nidhi Shukla Satish Kumar 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期85-98,共14页
Solar cells and other renewable energy sources are crucial in today's world where sustainability and environmental consciousness is at peak.Because of this,creating the optimal capacity is a fair aim for the opera... Solar cells and other renewable energy sources are crucial in today's world where sustainability and environmental consciousness is at peak.Because of this,creating the optimal capacity is a fair aim for the operators of such technologies.The transformation of solar energy into either electricity by means of photovoltaics or into useable fuel by means of photo electrochemical cells remained a primary objective for research organizations and development sectors.In this piece,we will take a look back at the history of solar cells and examine their progression through the generations.The significant aspects which have an impact on the solar cells' performance are also discussed.This article provides a comprehensive and in-depth overview of the important aspects that affect the solar cells' performance,as well as a discussion of the application of bio-inspired optimization algorithms to improve the parameters of solar cells.Reviewing critical factors and their optimization for solar cell performance enhancement is crucial.It helps identify key performance factors,understand limitations,and challenges,and identify effective optimization strategies.By evaluating trade-offs and synergies,it guides future research and informs industrial applications,leading to more efficient and sustainable solar cell technologies. 展开更多
关键词 solar energy photovoltaic cells TEMPERATURE IRRADIANCE design OPTIMIZATION
下载PDF
Optimization Study of Active-Passive Heating System Parameters in Village Houses in the Southern Xinjiang Province
15
作者 Xiaodan Wu Jie Li +1 位作者 Yongbin Cai Sihui Huang 《Energy Engineering》 EI 2024年第7期1963-1990,共28页
Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation ... Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems. 展开更多
关键词 Trombe wall biomass boilers active-passive combined heating systems parameter optimization villages and towns
下载PDF
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
16
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 Adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
下载PDF
Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation
17
作者 Yuanjun Dai Haonan Li Baohua Li 《Energy Engineering》 EI 2024年第6期1607-1636,共30页
This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w... This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect. 展开更多
关键词 Micro wind-hydrogen coupling system ultra-short-term wind power prediction sigmoid-PSO algorithm adaptive roll optimization predictive control strategy
下载PDF
Optimized CUDA Implementation to Improve the Performance of Bundle Adjustment Algorithm on GPUs
18
作者 Pranay R. Kommera Suresh S. Muknahallipatna John E. McInroy 《Journal of Software Engineering and Applications》 2024年第4期172-201,共30页
The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to refine the camera and point parameters. The Bundle Adjustment algorithm is a compute-intensive algorithm, and many researchers have improved its p... The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to refine the camera and point parameters. The Bundle Adjustment algorithm is a compute-intensive algorithm, and many researchers have improved its performance by implementing the algorithm on GPUs. In the previous research work, “Improving Accuracy and Computational Burden of Bundle Adjustment Algorithm using GPUs,” the authors demonstrated first the Bundle Adjustment algorithmic performance improvement by reducing the mean square error using an additional radial distorting parameter and explicitly computed analytical derivatives and reducing the computational burden of the Bundle Adjustment algorithm using GPUs. The naïve implementation of the CUDA code, a speedup of 10× for the largest dataset of 13,678 cameras, 4,455,747 points, and 28,975,571 projections was achieved. In this paper, we present the optimization of the Bundle Adjustment algorithm CUDA code on GPUs to achieve higher speedup. We propose a new data memory layout for the parameters in the Bundle Adjustment algorithm, resulting in contiguous memory access. We demonstrate that it improves the memory throughput on the GPUs, thereby improving the overall performance. We also demonstrate an increase in the computational throughput of the algorithm by optimizing the CUDA kernels to utilize the GPU resources effectively. A comparative performance study of explicitly computing an algorithm parameter versus using the Jacobians instead is presented. In the previous work, the Bundle Adjustment algorithm failed to converge for certain datasets due to several block matrices of the cameras in the augmented normal equation, resulting in rank-deficient matrices. In this work, we identify the cameras that cause rank-deficient matrices and preprocess the datasets to ensure the convergence of the BA algorithm. Our optimized CUDA implementation achieves convergence of the Bundle Adjustment algorithm in around 22 seconds for the largest dataset compared to 654 seconds for the sequential implementation, resulting in a speedup of 30×. Our optimized CUDA implementation presented in this paper has achieved a 3× speedup for the largest dataset compared to the previous naïve CUDA implementation. 展开更多
关键词 Scene Reconstruction Bundle Adjustment LEVENBERG-MARQUARDT Non-Linear Least Squares Memory Throughput Computational Throughput Contiguous Memory Access CUDA Optimization
下载PDF
Synthesis of an Optimal Control for Linear Stationary Discrete Dynamical Systems
19
作者 Arnold Andreevich Baloev 《Journal of Applied Mathematics and Physics》 2024年第10期3538-3551,共14页
In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information o... In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information on the multiple roots of the characteristic equation. This means one does not need to reconfigure the algorithm when changing the multiplicity groups. It is for this reason that the algorithm is called “universal”. In the present study, we solve the task of finding a linear optimal control for linear stationary discrete one- and higher-dimensional systems with scalar control. Moreover, we give analytical expressions for the control that minimize the quadratic criterion and ensure the asymptotic stability of the closed system. The obtained optimal control depends only on the parameters of the initial system and the roots of the characteristic equation. 展开更多
关键词 Difference Equations Multiple Roots Optimal Control
下载PDF
Optimization of the Gas Generator in Composite Power System with Tip-Jet Rotor
20
作者 Jianxiang Tang Yifei Wu +1 位作者 Yun Wang Jinwu Wu 《Journal of Power and Energy Engineering》 2024年第3期60-74,共15页
The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th... The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment. 展开更多
关键词 Tip-Jet Driven Rotor Composite Power system Gas Generator Optimization Hydrogen Peroxide Aerodynamic Characteristics Numerical Simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部