A flexible optoelectronic neural transistor(OENT)that consists of a one‐step spin‐coated tri‐blend film composed of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene(C8‐BTBT),poly(3‐hexylthiophene‐2,5‐diyl)(P...A flexible optoelectronic neural transistor(OENT)that consists of a one‐step spin‐coated tri‐blend film composed of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene(C8‐BTBT),poly(3‐hexylthiophene‐2,5‐diyl)(P3HT),and poly(methyl methacrylate)(PMMA)is demonstrated.The C8‐BTBT and P3HT phases in the film partially segregate into distinct domains,which combine to provide broadband spectrum sensing,and instant electrical‐processing capabilities dominated by C8‐BTBT.The OENT is sensitive to solar radiation from the near‐ultraviolet(NUV)and to visible(Vis)radiation from blue to red.When exposed to NUV radiation,the OENT responds sensitively and retains the memory of the exposure for over 10^(3 )s.The OENT provides a warning of excessive chronic exposure to harmful NUV.These properties allow high‐pass filtering with different cut‐off frequencies fc that can restrict the reception of blue,green,or red.These switchable fc enables sensitive image reconstruction and multitarget monitoring.The device combined with a chitosan gel achieves strictly defined short‐range plasticity of<1 s that can achieve diverse instant‐computing applications such as spatiotemporally correlated coding and logic functions.Stable real‐time signal processing facilitates the realization of a Morse‐code recognition system constructed using neuro‐morphological hardware,achieving highly accurate character recognition.This study provides a useful resource that can have applications in wearable biomedical electronics and multimodal neuromorphic computing.展开更多
Neural machine translation, which has an encoder-decoder framework, is considered to be a feasible way for future machine translation. Nevertheless, with the fusion of multiple languages and the continuous emergence o...Neural machine translation, which has an encoder-decoder framework, is considered to be a feasible way for future machine translation. Nevertheless, with the fusion of multiple languages and the continuous emergence of new words, most current neural machine translation systems based on von Neumann’s architecture have seen a substantial increase in the number of devices for the decoder, resulting in high-energy consumption rate. Here, a multilevel photosensitive blending semiconductor optoelectronic synaptic transistor(MOST) with two different trapping mechanisms is firstly demonstrated, which exhibits 8 stable and well distinguishable states and synaptic behaviors such as excitatory postsynaptic current, short-term memory, and long-term memory are successfully mimicked under illumination in the wavelength range of 480–800 nm. More importantly, an optical decoder model based on MOST is successfully fabricated,which is the first application of neuromorphic device in the field of neural machine translation, significantly simplifying the structure of traditional neural machine translation system.Moreover, as a multi-level synaptic device, MOST can further reduce the number of components and simplify the structure of the codec model under light illumination. This work first applies the neuromorphic device to neural machine translation, and proposes a multi-level synaptic transistor as the based cell of decoding module, which would lay the foundation for breaking the bottleneck of machine translation.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs)have attracted extensive attention due to their unique electronic and optical properties.In particular,TMDs can be fexibly combined to form diverse vertical van...Two-dimensional(2D)transition metal dichalcogenides(TMDs)have attracted extensive attention due to their unique electronic and optical properties.In particular,TMDs can be fexibly combined to form diverse vertical van der Waals(vdWs)heterostructures without the limitation of lattice matching,which creates vast opportunities for fundamental investigation of novel optoelectronic applications.Here,we report an atomically thin vertical p-n junction WSe_(2)/MoS_(2)produced by a chemical vapor deposition method.Transmission electron microscopy and steady-state photoluminescence experiments reveal its high quality and excellent optical properties.Back gate feld efect transistor(FET)constructed using this p-n junction exhibits bipolar behaviors and a mobility of 9 cm^(2)/(V·s).In addition,the photodetector based on MoS_(2)/WSe_(2)heterostructures displays outstanding optoelectronic properties(R=8 A/W,D^(*)=2.93×10^(11)Jones,on/of ratio of 10^(4)),which benefted from the built-in electric feld across the interface.The direct growth of TMDs p-n vertical heterostructures may ofer a novel platform for future optoelectronic applications.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.T2125005)the Tianjin Science Foundation for Distinguished Young Scholars(No.19JCJQJC61000)+1 种基金the Shenzhen Science and Technology Project(No.JCYJ20210324121002008)the Inter‐Governmental International Scientific and Technological Innovation Cooperation Key Projects(No.SQ2021YFE011099).
文摘A flexible optoelectronic neural transistor(OENT)that consists of a one‐step spin‐coated tri‐blend film composed of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene(C8‐BTBT),poly(3‐hexylthiophene‐2,5‐diyl)(P3HT),and poly(methyl methacrylate)(PMMA)is demonstrated.The C8‐BTBT and P3HT phases in the film partially segregate into distinct domains,which combine to provide broadband spectrum sensing,and instant electrical‐processing capabilities dominated by C8‐BTBT.The OENT is sensitive to solar radiation from the near‐ultraviolet(NUV)and to visible(Vis)radiation from blue to red.When exposed to NUV radiation,the OENT responds sensitively and retains the memory of the exposure for over 10^(3 )s.The OENT provides a warning of excessive chronic exposure to harmful NUV.These properties allow high‐pass filtering with different cut‐off frequencies fc that can restrict the reception of blue,green,or red.These switchable fc enables sensitive image reconstruction and multitarget monitoring.The device combined with a chitosan gel achieves strictly defined short‐range plasticity of<1 s that can achieve diverse instant‐computing applications such as spatiotemporally correlated coding and logic functions.Stable real‐time signal processing facilitates the realization of a Morse‐code recognition system constructed using neuro‐morphological hardware,achieving highly accurate character recognition.This study provides a useful resource that can have applications in wearable biomedical electronics and multimodal neuromorphic computing.
基金supported by the National Natural Science Foundation of China (61974029)the Natural Science Foundation for Distinguished Young Scholars of Fujian Province (2020J06012)Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ129)。
文摘Neural machine translation, which has an encoder-decoder framework, is considered to be a feasible way for future machine translation. Nevertheless, with the fusion of multiple languages and the continuous emergence of new words, most current neural machine translation systems based on von Neumann’s architecture have seen a substantial increase in the number of devices for the decoder, resulting in high-energy consumption rate. Here, a multilevel photosensitive blending semiconductor optoelectronic synaptic transistor(MOST) with two different trapping mechanisms is firstly demonstrated, which exhibits 8 stable and well distinguishable states and synaptic behaviors such as excitatory postsynaptic current, short-term memory, and long-term memory are successfully mimicked under illumination in the wavelength range of 480–800 nm. More importantly, an optical decoder model based on MOST is successfully fabricated,which is the first application of neuromorphic device in the field of neural machine translation, significantly simplifying the structure of traditional neural machine translation system.Moreover, as a multi-level synaptic device, MOST can further reduce the number of components and simplify the structure of the codec model under light illumination. This work first applies the neuromorphic device to neural machine translation, and proposes a multi-level synaptic transistor as the based cell of decoding module, which would lay the foundation for breaking the bottleneck of machine translation.
基金the National Natural Science Foundation of China(Grant Nos.62090035,U19A2090,and 61905071)the Key Program of the Hunan Provincial Science and Technology Department(Nos.2019XK2001 and 2020XK2001)the International Science and Technology Innovation Cooperation Base of Hunan Province(No.2018WK4004).
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)have attracted extensive attention due to their unique electronic and optical properties.In particular,TMDs can be fexibly combined to form diverse vertical van der Waals(vdWs)heterostructures without the limitation of lattice matching,which creates vast opportunities for fundamental investigation of novel optoelectronic applications.Here,we report an atomically thin vertical p-n junction WSe_(2)/MoS_(2)produced by a chemical vapor deposition method.Transmission electron microscopy and steady-state photoluminescence experiments reveal its high quality and excellent optical properties.Back gate feld efect transistor(FET)constructed using this p-n junction exhibits bipolar behaviors and a mobility of 9 cm^(2)/(V·s).In addition,the photodetector based on MoS_(2)/WSe_(2)heterostructures displays outstanding optoelectronic properties(R=8 A/W,D^(*)=2.93×10^(11)Jones,on/of ratio of 10^(4)),which benefted from the built-in electric feld across the interface.The direct growth of TMDs p-n vertical heterostructures may ofer a novel platform for future optoelectronic applications.