Brownmillerite-type oxides Ba_2In_(2-x-y)Mn_xAl_yO_(5+x)(0 ≤ x ≤ 0.6, 0 ≤ y ≤ 0.5) were prepared at 1300°C through solid-state reaction. X-ray diffraction(XRD) analysis showed that the structure symm...Brownmillerite-type oxides Ba_2In_(2-x-y)Mn_xAl_yO_(5+x)(0 ≤ x ≤ 0.6, 0 ≤ y ≤ 0.5) were prepared at 1300°C through solid-state reaction. X-ray diffraction(XRD) analysis showed that the structure symmetry evolved from orthorhombic to cubic with increasing Mn and Al contents. When y was greater than 0.3, peaks associated with small amounts of BaAl_2O_4 and Ba_2InAlO_5 impurities were observed in the XRD patterns. When substituted with a small amount of Mn(x ≤ 0.3), the Ba_2In_(2-x-y)Mn_xAl_yO_(5+x) samples exhibited an intense turquoise color. The color changed to green and dark-green with increasing Mn concentration. UV–vis absorbance spectra revealed that the color changed only slightly upon Al doping. The valence state of Mn ions in Ba_2In_(2-x-y)Mn_xAl_yO_(5+x) was confirmed to be +5 on the basis of X-ray photoelectron spectroscopic analysis. According to this analysis, the intense turquoise color of the Ba_2In_(2-x-y)Mn_xAl_yO_(5+x) samples is rooted in the existence of Mn^(5+); thus, the introduction of Al does not affect the optical properties of the compounds.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51402016)the Fundamental Research Funds for the Central Universities (No.FRF-TP-15-008A2)
文摘Brownmillerite-type oxides Ba_2In_(2-x-y)Mn_xAl_yO_(5+x)(0 ≤ x ≤ 0.6, 0 ≤ y ≤ 0.5) were prepared at 1300°C through solid-state reaction. X-ray diffraction(XRD) analysis showed that the structure symmetry evolved from orthorhombic to cubic with increasing Mn and Al contents. When y was greater than 0.3, peaks associated with small amounts of BaAl_2O_4 and Ba_2InAlO_5 impurities were observed in the XRD patterns. When substituted with a small amount of Mn(x ≤ 0.3), the Ba_2In_(2-x-y)Mn_xAl_yO_(5+x) samples exhibited an intense turquoise color. The color changed to green and dark-green with increasing Mn concentration. UV–vis absorbance spectra revealed that the color changed only slightly upon Al doping. The valence state of Mn ions in Ba_2In_(2-x-y)Mn_xAl_yO_(5+x) was confirmed to be +5 on the basis of X-ray photoelectron spectroscopic analysis. According to this analysis, the intense turquoise color of the Ba_2In_(2-x-y)Mn_xAl_yO_(5+x) samples is rooted in the existence of Mn^(5+); thus, the introduction of Al does not affect the optical properties of the compounds.