期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Low-temperature chemistry in plasma-driven ammonia oxidative pyrolysis
1
作者 Mingming Zhang Qi Chen +2 位作者 Guangzhao Zhou Jintao Sun He Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1477-1488,共12页
Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagat... Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagation speed of ammonia pose significant challenges to its application in engines. Non-equilibrium plasma has been identified as a promising method, but current research on plasma-enhanced ammonia combustion is limited and primarily focuses on ignition characteristics revealed by kinetic models. In this study, low-temperature and low-pressure chemistry in plasma-assisted ammonia oxidative pyrolysis is investigated by integrated studies of steady-state GC measurements and mathematical simulation. The detailed kinetic mechanism of NH_(3) decomposition in plasma-driven Ar/NH_(3) and Ar/NH_(3)/O_(2) mixtures has been developed. The numerical model has good agreements with the experimental measurements in NH_(3)/O_(2) consumption and N_(2)/H_(2) generation, which demonstrates the rationality of modelling. Based on the modelling results, species density profiles, path flux and sensitivity analysis for the key plasmaproduced species such as NH_(2), NH, H_(2), OH, H, O, O(^(1)D), O_(2)(a^(1)△_(g)), O_(2)(b^(1)∑_(g)^(+)), Ar^(*), H^(-), Ar^(+), NH_(3)^(+), O_(2)^(-) in the discharge and afterglow are analyzed in detail to illustrate the effectiveness of the active species on NH_(3) excitation and decomposition at low temperature and relatively higher E/N values. The results revealed that NH_(2), NH, H as well as H_(2) are primarily generated through the electron collision reactions e + NH_(3)→ e + NH_(2)+ H, e + NH_(3)→ e + NH + H_(2) and the excited-argon collision reaction Ar^(*) + NH_(3)+ H → Ar + NH_(2)+ 2H, which will then react with highly reactive oxidative species such as O_(2)^(*), O^(*), O, OH, and O_(2) to produce stable products of NOx and H_(2)O. NH_(3)→ NH is found a specific pathway for NH_(3) consumption with plasma assistance, which further highlights the enhanced kinetic effects. 展开更多
关键词 Non-equilibrium plasma Ammonia fuel Oxidative pyrolysis Pathway flux analysis Sensitivity analysis
下载PDF
Thermal oxidation of two aviation synthetic lubricant base oils 被引量:3
2
作者 费逸伟 郭峰 +2 位作者 姚婷 杨宏伟 程治升 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期396-404,共9页
The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "a... The thermal degradation of two synthetic lubricants base oils, poly-a-olefins (PAO) and di-esters (DE), was investigated under oxidative pyrolysis condition and their properties were characterized in simulated "areo-engine" by comparing the thermal stability and identifying the products of thermal decomposition as a function of exposure temperature. The characterization of the products were performed by means of Fourier transform infrared spectrometry (FTIR), gas chromatography/mass spectrometry (GC/MS) and viscosity experiments. The results show that PAO has the lower thermal stability, being degraded at 200℃ different from 300 ℃ for DE. Several by-products are identified during the thermal degradation of two lubricant base oils. The majority of PAO products consist of alkenes and olefins, while more oxygen-contained organic compounds are detected in DE samples based on GC/MS analysis. The related reaction mechanisms are discussed based on the experimental results. 展开更多
关键词 synthetic aviation lubricant base oils thermal stability oxidative pyrolysis GC/MS analysis viscosity degradation
下载PDF
Catalytic effects of V_(2)O_(5) on oxidative pyrolysis of spent cation exchange resin 被引量:2
3
作者 Qi SONG Jian-hua SHEN +3 位作者 Yong YANG Yao YANG Bin-bo JIANG Zu-wei LIAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第2期94-105,共12页
Pyrolysis is a cost-effective and safe method for the disposal of radioactive spent resins.In this work,the catalytic effects of V_(2)O_(5) on the pyrolysis of cation exchange resin are investigated for the first time... Pyrolysis is a cost-effective and safe method for the disposal of radioactive spent resins.In this work,the catalytic effects of V_(2)O_(5) on the pyrolysis of cation exchange resin are investigated for the first time.The results show that it is a better catalyst than others so far studied and achieves a lowering of final pyrolysis temperature and residual rate simultaneously when aided by physical blending.The maximum reductions of the final pyrolysis temperature and the residual rate are 173℃and 11.9%(in weight),respectively.Under the action of V_(2)O_(5),low-temperature(445℃)removal of partial sulfonic acid groups occurs and the pyrolysis of the resin copolymer matrix is promoted.This is demonstrated by the analysis of pyrolysis residues at different temperatures by X-ray photoelectron spectroscopy(XPS)and element analysis.The catalytic activity of V_(2)O_(5) is determined by effects both at acid sites and oxidation-reduction centers via H2-TPR(temperature programmed reduction),V_(2)-TPD(temperature programmed desorption),CV_(2)-TPD,and NH3-TPD.The catalytic effect of oxidation-reduction centers in V_(2)O_(5) is achieved by close contact with the sulfur bond through chemisorption under the effect of acid sites.V_(2)O_(5) is also believed to be the reason for the removal of partial sulfonic acid groups at lower temperatures(445℃).V_(2)O_(5) is an effective catalyst for spent resin pyrolysis and can be further applied in industry. 展开更多
关键词 Waste disposal Cation exchange resin V2O5 CATALYSIS Oxidative pyrolysis
原文传递
Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres 被引量:7
4
作者 Mei Zhong Shiqiu Gao +3 位作者 Qi Zhou Junrong Yue Fengyun Ma Guangwen Xu 《Particuology》 SCIE EI CAS CSCD 2016年第2期59-67,共9页
The physiochemical properties of chars produced by coal pyrolysis in a laboratory-scale fluidized bed reactor with a continuous coal feed and char discharge at temperatures of 750 to 980 ~ C under N2-based atmospheres... The physiochemical properties of chars produced by coal pyrolysis in a laboratory-scale fluidized bed reactor with a continuous coal feed and char discharge at temperatures of 750 to 980 ~ C under N2-based atmospheres containing 02, H2, CO, CH4, and CO2 were studied. The specific surface area of the char was found to decrease with increasing pyrolysis temperature. The interlayer spacing of the char also decreased, while the average stacking height and carbon crystal size increased at higher temperatures, suggesting that the char generated at high temperatures had a highly ordered structure. The char obtained using an ER value of 0.064 exhibited the highest specific surface area and oxidation reactivity. Rela- tively high 02 concentrations degraded the pore structure of the char, decreasing the surface area. The char produced in an atmosphere incorporating H2 showed a more condensed crystalline structure and consequently had lower oxidation reactivity. 展开更多
关键词 pyrolysis Coal char Oxidation reactivity Active sites Crystal structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部