期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation 被引量:1
1
作者 Qiu-Yue Zhai Yuan-Hua Ye +4 位作者 Yu-Qian Ren Zhen-Hua Song Ke-Li Ge Bao-He Cheng Yun-Liang Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期618-625,共8页
Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.... Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.In addition,the survival,differentiation,and proliferation rates of transplanted exogenous NSCs are low,which limit their clinical application.Our previous study showed that neuregulin1β(NRG1β)alleviated cerebral I/R injury in rats.In this study,we aimed to induce human umbilical cord mesenchymal stem cells into NSCs and investigate the improvement effect and mechanism of NSCs pretreated with 10 nM NRG1βon PC12 cells injured by oxygen-glucose deprivation/reoxygenation(OGD/R).Our results found that 5 and 10 nM NRG1βpromoted the generation and proliferation of NSCs.Co-culture of NSCs and PC12 cells under condition of OGD/R showed that pretreatment of NSCs with NRG1βimproved the level of reactive oxygen species,malondialdehyde,glutathione,superoxide dismutase,nicotinamide adenine dinucleotide phosphate,and nuclear factor erythroid 2-related factor 2(Nrf2)and mitochondrial damage in injured PC12 cells;these indexes are related to ferroptosis.Research has reported that p53 and solute carrier family 7 member 11(SLC7A11)play vital roles in ferroptosis caused by cerebral I/R injury.Our data show that the expression of p53 was increased and the level of glutathione peroxidase 4(GPX4)was decreased after RNA interference-mediated knockdown of SLC7A11 in PC12 cells,but this change was alleviated after co-culturing NSCs with damaged PC12 cells.These findings suggest that NSCs pretreated with NRG1βexhibited neuroprotective effects on PC12 cells subjected to OGD/R through influencing the level of ferroptosis regulated by p53/SLC7A11/GPX4 pathway. 展开更多
关键词 ferroptosis p53 SLC7A11 GPX4 human umbilical cord-mesenchymal stem cells neural stem cells neuregulin1β NEUROPROTECTION oxygen-glucose deprivation/reoxygenation PC12 cell
下载PDF
Protective effect of ginsenoside Rg1 on 661W cells exposed to oxygen-glucose deprivation/reperfusion via keap1/nrf2 pathway
2
作者 Ming Zhou Xin-Qi Ma +4 位作者 Yi-Yu Xie Jia-Bei Zhou Xie-Lan Kuang Huang-Xuan Shen Chong-De Long 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第7期1026-1033,共8页
AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the... AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the protective effect of ginsenoside Rg1.METHODS:The 661W cells were treated with different concentrations of Na2S2O4 to establish OGD/R model in vitro.Apoptosis,intracellular reactive oxygen species(ROS)levels and superoxide dismutase(SOD)levels were measured at different time points during the reperfusion injury process.The injury model was pretreated with graded concentrations of ginsenoside Rg1.Real-time polymerase chain reaction(PCR)was used to measure the expression levels of cytochrome C(cyt C)/B-cell lymphoma-2(Bcl2)/Bcl2 associated protein X(Bax),heme oxygenase-1(HO-1),caspase9,nuclear factor erythroid 2-related factor 2(nrf2),kelch-like ECH-associated protein 1(keap1)and other genes.Western blot was used to detect the expression of nrf2,phosphorylated nrf2(pnrf2)and keap1 protein levels.RESULTS:Compared to the untreated group,the cell activity of 661W cells treated with Na2S2O4 for 6 and 8h decreased(P<0.01).Additionally,the ROS content increased and SOD levels decreased significantly(P<0.01).In contrast,treatment with ginsenoside Rg1 reversed the cell viability and SOD levels in comparison to the Na_(2)S_(2)O_(4)treated group(P<0.01).Moreover,Rg1 reduced the levels of caspase3,caspase9,and cyt C,while increasing the Bcl2/Bax level.These differences were all statistically significant(P<0.05).Western blot analysis showed no significant difference in the protein expression levels of keap1 and nrf2 with Rg1 treatment,however,Rg1 significantly increased the ratio of pnrf2/nrf2 protein expression compared to the Na_(2)S_(2)O_(4)treated group(P<0.001).CONCLUSION:The OGD/R process is induced in 661W cells using Na_(2)S_(2)O_(4).Rg1 inhibits OGD/R-induced oxidative damage and alleviates the extent of apoptosis in 661W cells through the keap1/nrf2 pathway.These results suggest a potential protective effect of Rg1 against retinal I/R injury. 展开更多
关键词 oxygen-glucose deprivation/reoxygenation ginsenoside Rg1 oxidative stress phosphorylated nrf2
原文传递
Effects of extracellular vesicles from mesenchymal stem cells on oxygen-glucose deprivation/reperfusioninduced neuronal injury 被引量:5
3
作者 Shuang-shuang Gu Xiu-wen Kang +4 位作者 Jun Wang Xiao-fang Guo Hao Sun Lei Jiang Jin-song Zhang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2021年第1期61-67,共7页
BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-s... BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects ofBMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation andreperfusion (OGD/R) injury.METHODS: The primary cortical neuron OGD/R model was established to simulate the processof cerebral I/R in vitro. Based on this model, we examined whether the mechanism through whichBMSC-sEVs could rescue OGD/R-induced neuronal injury.RESULTS: BMSC-sEVs (20 μg/mL, 40 μg/mL) significantly decreased the reactive oxygenspecies (ROS) productions, and increased the activities of superoxide dismutase (SOD) and glutathioneperoxidase (GPx). Additionally, BMSC-sEVs prevented OGD/R-induced neuronal apoptosis in vivo, asindicated by increased cell viability, reduced lactate dehydrogenase (LDH) leakage, decreased terminaldeoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining-positivecells, down-regulated cleaved caspase-3, and up-regulated Bcl-2/Bax ratio. Furthermore, Westernblot and flow cytometry analysis indicated that BMSC-sEV treatment decreased the expression ofphosphorylated calcium/calmodulin-dependent kinase II (p-CaMK II)/CaMK II, suppressed the increaseof intracellular calcium concentration ([Ca2+]i) caused by OGD/R in neurons.CONCLUSIONS: These results demonstrate that BMSC-sEVs have signifi cant neuroprotectiveeff ects against OGD/R-induced cell injury by suppressing oxidative stress and apoptosis, and Ca2+/CaMK II signaling pathways may be involved in this process. 展开更多
关键词 oxygen-glucose deprivation and reperfusion Cortical neurons Oxidative stress Small extracellular vesicles
下载PDF
Protective effect of mesenchymal stem cell-derived exosomal treatment of hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury 被引量:1
4
作者 Xiao-fang Guo Shuang-shuang Gu +5 位作者 Jun Wang Hao Sun Yu-juan Zhang Peng-fei Yu Jin-song Zhang Lei Jiang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2022年第1期46-53,共8页
BACKGROUND:Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury.Mesenchymal stem cell(MSC)transplantation is used to reduce tissue damage,but exosomes are mor... BACKGROUND:Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury.Mesenchymal stem cell(MSC)transplantation is used to reduce tissue damage,but exosomes are more stable and highly conserved than MSCs.This study was conducted to investigate the therapeutic effects of MSC-derived exosomes(MSC-Exo)on cerebral ischemia-reperfusion injury in an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R),and to explore the underlying mechanisms.METHODS:Primary hippocampal neurons obtained from 18-day Sprague-Dawley rat embryos were subjected to OGD/R treatment,with or without MSC-Exo treatment.Exosomal integration,cell viability,mitochondrial membrane potential,and generation of reactive oxygen species(ROS)were examined.Terminal deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphate nickend labeling(TUNEL)staining was performed to detect neuronal apoptosis.Moreover,mitochondrial function-associated gene expression,Nrf2 translocation,and expression of downstream antioxidant proteins were determined.RESULTS:MSC-Exo attenuated OGD/R-induced neuronal apoptosis and decreased ROS generation(P<0.05).The exosomes reduced OGD/R-induced Nrf2 translocation into the nucleus(2.14±0.65 vs.5.48±1.09,P<0.01)and increased the intracellular expression of antioxidative proteins,including superoxide dismutase and glutathione peroxidase(17.18±0.97 vs.14.40±0.62,and 20.65±2.23 vs.16.44±2.05,respectively;P<0.05 for both).OGD/R significantly impaired the mitochondrial membrane potential and modulated the expression of mitochondrial functionassociated genes,such as PINK,DJ1,LRRK2,Mfn-1,Mfn-2,and OPA1.The abovementioned changes were partially reversed by exosomal treatment of the hippocampal neurons.CONCLUSIONS:MSC-Exo treatment can alleviate OGD/R-induced oxidative stress and dysregulation of mitochondrial function-associated genes in hippocampal neurons.Therefore,MSCExo might be a potential therapeutic strategy to prevent OGD/R-induced neuronal injury. 展开更多
关键词 Mesenchymal stem cells EXOSOMES oxygen-glucose deprivation/reperfusion Reactive oxygen species MITOCHONDRIA
下载PDF
Rac1 relieves neuronal injury induced by oxygen-glucose deprivation and re-oxygenation via regulation of mitochondrial biogenesis and function
5
作者 Ping-Ping Xia Fan Zhang +5 位作者 Cheng Chen Zhi-Hua Wang Na Wang Long-Yan Li Qu-Lian Guo Zhi Ye 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第10期1937-1946,共10页
Certain microRNAs(miRNAs)can function as neuroprotective factors after reperfusion/ischemia brain injury.miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negat... Certain microRNAs(miRNAs)can function as neuroprotective factors after reperfusion/ischemia brain injury.miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negatively regulating the activity of Rac1,but it remains unclear whether miRNA-142-3p also participates in cerebral ischemia/reperfusion injury.In this study,a model of oxygen-glucose deprivation/re-oxygenation in primary cortical neurons was established and the neurons were transfected with miR-142-3p agomirs or miR-142-3p antagomirs.miR-142-3p expression was down-regulated in neurons when exposed to oxygen-glucose deprivation/re-oxygenation.Over-expression of miR-142-3p using its agomir remarkably promoted cell death and apoptosis induced by oxygen-glucose deprivation/re-oxygenation and improved mitochondrial biogenesis and function,including the expression of peroxisome proliferator-activated receptor-γcoactivator-1α,mitochondrial transcription factor A,and nuclear respiratory factor 1.However,the opposite effects were produced if miR-142-3p was inhibited.Luciferase reporter assays verified that Rac Family Small GTPase 1(Rac1)was a target gene of miR-142-3p.Over-expressed miR-142-3p inhibited NOX2 activity and expression of Rac1 and Rac1-GTPase(its activated form).miR-142-3p antagomirs had opposite effects after oxygen-glucose deprivation/re-oxygenation.Our results indicate that miR-142-3p down-regulates the expression and activation of Rac1,regulates mitochondrial biogenesis and function,and inhibits oxygen-glucose deprivation damage,thus exerting a neuroprotective effect.The experiments were approved by the Committee of Experimental Animal Use and Care of Central South University,China(approval No.201703346)on March 7,2017. 展开更多
关键词 BIOGENESIS ischemia/reperfusion injury MICRORNAS miR-142-3p MITOCHONDRIA NEUROPROTECTION NOX2 oxygen-glucose deprivation RAC1
下载PDF
Neuroprotective effect and mechanism of daidzein in oxygen-glucose deprivation/reperfusion injury based on experimental approaches and network pharmacology
6
作者 Ming-Hua Xian Si-Kai Zhan +4 位作者 Ke-Ning Zheng Qu-liu Ke-Ning Li Jia-Yin Liang Shu-Mei Wang 《Traditional Medicine Research》 2021年第5期10-19,共10页
Background:Daidzein,phytoestrogens derived from the Pueraria lobata(Willd.)Ohwi root used in traditional Chinese medicine,has a wide range of biological activities,including antioxidant,anti-inflammatory,and neuroprot... Background:Daidzein,phytoestrogens derived from the Pueraria lobata(Willd.)Ohwi root used in traditional Chinese medicine,has a wide range of biological activities,including antioxidant,anti-inflammatory,and neuroprotection.However,the neuroprotective role of daidzein in oxygen-glucose deprivation/reperfusion injury and its underlying mechanism are still unknown.Methods:In this study,we used pheochromocytoma cells induced by oxygen-glucose deprivation and reperfusion to study the potential effect in the protection of the nerve cells.Then,we used molecular docking simulation and network pharmacology to predict the possible targets and pharmacological pathways of daidzein.Western blot was used to verify the expression of target proteins with or without adding the inhibitors.Results:After daidzein treatment,cell vitality had an upward trend(P<0.05)and the release of lactate dehydrogenase had a downward trend(P<0.01)in dose-dependent compared with the model group by exposure to oxygen-glucose deprivation and reperfusion.Several core targets were analyzed through network pharmacology and molecular docking including catalase,peroxisome proliferator-activated receptor gamma,vascular endothelial growth factor A,interleukin-6,tumor necrosis factor,nitric oxide synthase 3,prostaglandin-endoperoxide synthase 2,and RAC-alpha serine/threonine kinase 1.These results suggest that catalase may be a first-ranked target for the neuroprotective role of daidzein.Gene Ontology enrichment analysis indicated the pathways mainly contained molecule metabolic process,while Kyoto Encyclopedia of Genes and Genomes enrichment analysis focus on pathways in terms of inflammation such as tumor necrosis factor signal pathway.Then,Western blot results showed that daidzein had a significant increase on the expression of protein catalase(P<0.01).Daidzein reversed catalase level alterations after oxygen-glucose deprivation reperfusion injury in a dose-dependent manner which was consistent with the catalase antagonists-based experiments.Conclusion:These outcomes provide new insights into the neuroprotective effect and mechanism of daidzein in oxygen-glucose deprivation/reperfusion injury. 展开更多
关键词 DAIDZEIN NEUROPROTECTION CATALASE oxygen-glucose deprivation and reperfusion network pharmacology
下载PDF
Tilianin extracted from Xiangqinglan(Herba Dracocephali Moldovicae)inhibits apoptosis induced by mitochondrial pathway and endoplasmic reticulum stress in H9c2 cells after oxygen-glucose deprivation/reoxygenation
7
作者 JIANG Wen ZHANG Wei +4 位作者 ZHANG Yuxiang YANG Hao PAN Xiaomei CHEN Qiang CHEN Junhui 《Journal of Traditional Chinese Medicine》 SCIE CSCD 2023年第1期42-50,共9页
OBJECTIVE:To investigate the efficacy of tilianin extracted from Xiangqinglan(Herba Dracocephali Moldovicae)on apoptosis of H9c2 cell after oxygenglucose deprivation/reoxygenation(OGD/R)and the mechanism.METHODS:Tilia... OBJECTIVE:To investigate the efficacy of tilianin extracted from Xiangqinglan(Herba Dracocephali Moldovicae)on apoptosis of H9c2 cell after oxygenglucose deprivation/reoxygenation(OGD/R)and the mechanism.METHODS:Tilianin was obtained from Beijing Inluck Science and Technology Development Co.Ltd.,with purity≥98%.The OGD/R model was established in H9c2 cells.Flow cytometry detected the mitochondrial membrane potential,apoptosis rates,mitochondrial reactive oxygen species(ROS)and calcium ion concentration.Succinate dehydrogenase(SDH)activity,succinate content and levels of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1β)were detected with enzyme-linked immunosorbent assay.Western blot measured protein levels.RESULTS:Tilianin significantly reduced the apoptotic rates,ROS levels,calcium ion concentration,succinate content,and,levels of TNF-α,IL-6 and IL-1βof OGD/R cells,while significantly increased the membrane potential and SDH activity in mitochondria.Western blot analysis showed that tilianin significantly up-regulated pCalmodulin-dependent protein kinaseⅡand voltagedependent anion selective channel levels in OGD/R cells,while significantly down-regulated p-protein kinase B,Bcl-2-associated X,and dynamin-related protein 1 levels related to apoptosis in the mitochondrial pathway.Moreover,tilianin significantly up-regulated B-cell lymphoma-2 and mitochondrial protein 2 related to the inhibition of apoptosis.Furthermore,tilianin downregulated phosphorylated-apoptosis signal-regulated kinase 1,phosphorylated-p38 and C/EBP homologous protein related to endoplasmic reticulum stress.CONCLUSIONS:Tilianin may inhibit OGD/R-induced H9c2 cell apoptosis mediated by mitochondrial pathway and endoplasmic reticulum stress,thus protecting cardiomyocytes. 展开更多
关键词 APOPTOSIS MITOCHONDRIA endoplasmic reticulum stress tilianin oxygen-glucose deprivation/reoxygenation
原文传递
Bone marrow-derived mesenchymal stem cells modulate autophagy in RAW264.7 macrophages via the phosphoinositide 3-kinase/protein kinase B/heme oxygenase-1 signaling pathway under oxygen-glucose deprivation/restoration conditions 被引量:5
8
作者 Ning-Fang Wang Chun-Xue Bai 《Chinese Medical Journal》 SCIE CAS CSCD 2021年第6期699-707,共9页
Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the po... Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods: We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditionsin vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results: The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20vs. 0.44 ± 0.08,t = 6.67,P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04vs. 0.95 ± 0.10,t = 2.90,P < 0.05), and PI3K (0.40 ± 0.06vs. 0.63 ± 0.10,t = 3.42,P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02vs. 0.58 ± 0.03,t = 9.13,P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14vs. 1.27 ± 0.20,t = 4.12,P < 0.05), up-regulated p62 expression (1.10 ± 0.20vs. 0.77 ± 0.04,t = 2.80,P < 0.05), and up-regulated PI3K (0.54 ± 0.05vs. 0.40 ± 0.06,t = 3.11,P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05vs. 0.39 ± 0.02,t = 9.13,P < 0.05). A whole-genome microarray assay screened the differentially expressed geneHO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration ofHO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions: Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstancesin vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI. 展开更多
关键词 Bone marrow mesenchymal stem cells oxygen-glucose deprivation/restoration Phosphoinositide 3-kinase/protein kinase B signaling pathway Macrophages AUTOPHAGY Whole-genome microarray assay
原文传递
Transplantation of human placental chorionic plate-derived mesenchymal stem cells for repair of neurological damage in neonatal hypoxic-ischemic encephalopathy
9
作者 Lulu Xue Ruolan Du +8 位作者 Ning Bi Qiuxia Xiao Yifei Sun Ruize Niu Yaxin Tan Li Chen Jia Liu Tinghua Wang Liulin Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2027-2035,共9页
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische... Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function. 展开更多
关键词 behavioral evaluations gene knockout human neuroblastoma cells(SH-SY5Y) human placental chorionic derived mesenchymal stem cells INTERLEUKIN-3 neonatal hypoxic-ischemic encephalopathy nerve injury oxygen-glucose deprivation protein chip small interfering RNA
下载PDF
Chlorogenic acid alleviates hypoxic-ischemic brain injury in neonatal mice 被引量:3
10
作者 Lu-Yao Li Qi Wang +9 位作者 Lu Deng Zhen Lin Jing-Jing Lin Xin-Ye Wang Tian-Yang Shen Yi-Hui Zheng Wei Lin Pei-Jun Li Xiao-Qin Fu Zhen-Lang Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期568-576,共9页
Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we ... Recent studies have shown that chlorogenic acid(CGA),which is present in coffee,has protective effects on the nervous system.However,its role in neonatal hypoxic-ischemic brain injury remains unclear.In this study,we established a newborn mouse model of hypoxic-ischemic brain injury using a modified Rice-Vannucci method and performed intraperitoneal injection of CGA.We found that CGA intervention effectively reduced the volume of cerebral infarct,alleviated cerebral edema,restored brain tissue structure after injury,and promoted axon growth in injured brain tissue.Moreover,CGA pretreatment alleviated oxygen-glucose deprivation damage of primary neurons and promoted neuron survival.In addition,changes in ferroptosis-related proteins caused by hypoxic-ischemic brain injury were partially reversed by CGA.Furthermore,CGA intervention upregulated the expression of the key ferroptosis factor glutathione peroxidase 4 and its upstream glutamate/cystine antiporter related factors SLC7A11 and SLC3A2.In summary,our findings reveal that CGA alleviates hypoxic-ischemic brain injury in neonatal mice by reducing ferroptosis,providing new ideas for the treatment of neonatal hypoxic-ischemic brain injury. 展开更多
关键词 chlorogenic acid ferroptosis glutathione peroxidase 4 lipid peroxidation neonatal hypoxic-ischemic brain injury NEURONS NEUROPROTECTION oxidative stress oxygen-glucose deprivation system Xc^(-)
下载PDF
miR-181b promotes angiogenesis and neurological function recovery after ischemic stroke 被引量:1
11
作者 Li-Xia Xue Lin-Yuan Shu +6 位作者 Hong-Mei Wang Kai-Li Lu Li-Gang Huang Jing-Yan Xiang Zhi Geng Yu-Wu Zhao Hao Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1983-1989,共7页
Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promo... Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promote angiogenesis in hypoxia and traumatic brain injury model,while its effect on ischemic stroke remains elusive.In this study,we found that overexpression of miR-181b in brain microvascular endothelial cells subjected to oxygen-glucose deprivation in vitro restored cell prolife ration and enhanced angiogenesis.In rat models of focal cerebral ischemia,ove rexpression of miR-181b reduced infarction volume,promoted angiogenesis in ischemic penumbra,and improved neurological function.We further investigated the molecular mechanism by which miR-181b participates in angiogenesis after ischemic stroke and found that miR-181b directly bound to the 3’-UTR of phosphatase and tensin homolog(PTEN) mRNA to induce PTEN downregulation,leading to activation of the protein kinase B(Akt) pathway,upregulated expression of vascular endothelial growth facto rs,down-regulated expression of endostatin,and promoted angiogenesis.Taken togethe r,these results indicate that exogenous miR-181b exhibits neuroprotective effects on ischemic stro ke through activating the PTEN/Akt signal pathway and promoting angiogenesis. 展开更多
关键词 Akt ANGIOGENESIS ENDOSTATIN ischemic stroke middle cerebral artery occlusion miR-181b neurological function recovery oxygen-glucose deprivation PTEN vascular endothelial growth factor
下载PDF
Vav1 promotes inflammation and neuronal apoptosis in cerebral ischemia/reperfusion injury by upregulating microglial and NLRP3 inflammasome activation 被引量:1
12
作者 Jing Qiu Jun Guo +3 位作者 Liang Liu Xin Liu Xianhui Sun Huisheng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2436-2442,共7页
Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a gua... Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a guanine nucleotide exchange factor that is related to microglial activation.However,how Vav1 participates in the inflammato ry response after cerebral ischemia/reperfusion inj ury remains unclea r.In this study,we subjected rats to occlusion and repe rfusion of the middle cerebral artery and subjected the BV-2 mic roglia cell line to oxygen-glucose deprivatio n/reoxygenation to mimic cerebral ischemia/repe rfusion in vivo and in vitro,respectively.We found that Vav1 levels were increased in the brain tissue of rats subjected to occlusion and reperfusion of the middle cerebral arte ry and in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation.Silencing Vav1 reduced the cerebral infarct volume and brain water content,inhibited neuronal loss and apoptosis in the ischemic penumbra,and im p roved neurological function in rats subjected to occlusion and repe rfusion of the middle cerebral artery.Further analysis showed that Vav1 was almost exclusively localized to microglia and that Vav1 downregulation inhibited microglial activation and the NOD-like receptor pyrin 3(NLRP3) inflammasome in the ischemic penumbra,as well as the expression of inflammato ry facto rs.In addition,Vov1 knoc kdown decreased the inflammatory response exhibited by BV-2 cells after oxygen-glucose deprivation/reoxyge nation.Taken together,these findings show that silencing Vav1 attenuates inflammation and neuronal apoptosis in rats subjected to cerebral ischemia/repe rfusion through inhibiting the activation of mic roglia and NLRP3 inflammasome. 展开更多
关键词 apoptosis cerebral ischemia/reperfusion inflammatory cytokines microglia microglial activation middle cerebral artery occlusion neuroprotection NLRP3 inflammasome oxygen-glucose deprivation/reoxygenation Vav1
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury
13
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis 被引量:16
14
作者 Xue Zeng Yun-Dong Zhang +7 位作者 Rui-Yan Ma Yuan-Jing Chen Xin-Ming Xiang Dong-Yao Hou Xue-Han Li He Huang Tao Li Chen-Yang Duan 《Military Medical Research》 SCIE CAS CSCD 2022年第6期668-685,共18页
Background: Cerebral ischemia-reperfusion injury(CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury re... Background: Cerebral ischemia-reperfusion injury(CIRI) refers to a secondary brain injury that can occur when the blood supply to the ischemic brain tissue is restored. However, the mechanism underlying such injury remains elusive.Methods: The 150 male C57 mice underwent middle cerebral artery occlusion(MCAO) for 1 h and reperfusion for 24 h,Among them, 50 MCAO mice were further treated with Mitochondrial division inhibitor 1(Mdivi-1) and 50 MCAO mice were further treated with N-acetylcysteine(NAC). SH-SY5Y cells were cultured in a low-glucose culture medium for 4 h under hypoxic conditions and then transferred to normal conditions for 12 h. Then, cerebral blood flow, mitochondrial structure, mitochondrial DNA(mtDNA) copy number, intracellular and mitochondrial reactive oxygen species(ROS),autophagic flux, aggresome and exosome expression profiles, cardiac tissue structure, mitochondrial length and cristae density, mtDNA and ROS content, as well as the expression of Drp1-Ser616/Drp1, RIP1/RIP3, LC3 II/I, TNF-α,IL-1β, etc., were detected under normal or Drp1 interference conditions.Results: The mtDNA content, ROS levels, and Drp1-Ser616/Drp1 were elevated by 2.2, 1.7 and 2.7 times after CIRI(P<0.05). However, the high cytoplasmic LC3 II/I ratio and increased aggregation of p62 could be reversed by 44%and 88% by Drp1 short hairpin RNA(shRNA)(P<0.05). The low fluorescence intensity of autophagic flux and the increased phosphorylation of RIP3 induced by CIRI could be attenuated by ROS scavenger, NAC(P<0.05). RIP1/RIP3inhibitor Necrostatin-1(Nec-1) restored 75% to a low LC3 II/I ratio and enhanced 2 times to a high RFP-LC3 after Drp1 activation(P<0.05). In addition, although CIRI-induced ROS production caused no considerable accumulation of autophagosomes(P>0.05), it increased the packaging and extracellular secretion of exosomes containing p62 by 4–5 times, which could be decreased by Mdivi-1, Drp1 shRNA, and Nec-1(P<0.05). Furthermore, TNF-α and IL-1βincreased in CIRI-derived exosomes could increase RIP3 phosphorylation in normal or oxygen–glucose deprivation/reoxygenation(OGD/R) conditions(P<0.05).Conclusions: CIRI activated Drp1 and accelerated the p62-mediated formation of autophagosomes while inhibiting the transition of autophagosomes to autolysosomes via the RIP1/RIP3 pathway activation. Undegraded autophagosomes were secreted extracellularly in the form of exosomes, leading to inflammatory cascades that further damaged mitochondria, resulting in excessive ROS generation and the blockage of autophagosome degradation,triggering a vicious cycle. 展开更多
关键词 Cerebral ischemia-reperfusion(CIRI) oxygen-glucose deprivation/reoxygenation(OGD/R) Drp1 P62 LC3 II/I Reactive oxygen species(ROS) RIP1/RIP3 Autophagy EXOSOME Inflammatory
原文传递
Essential role of MALAT1 in reducing traumatic brain injury 被引量:4
15
作者 Na Wu Chong-Jie Cheng +5 位作者 Jian-Jun Zhong Jun-Chi He Zhao-Si Zhang Zhi-Gang Wang Xiao-Chuan Sun Han Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第8期1776-1784,共9页
As a highly evolutionary conserved long non-coding RNA,metastasis associated lung adenocarcinoma transcript 1(MALAT1)was first demonstrated to be related to lung tumor metastasis by promoting angiogenesis.To investiga... As a highly evolutionary conserved long non-coding RNA,metastasis associated lung adenocarcinoma transcript 1(MALAT1)was first demonstrated to be related to lung tumor metastasis by promoting angiogenesis.To investigate the role of MALAT1 in traumatic brain injury,we established mouse models of controlled cortical impact and cell models of oxygen-glucose deprivation to mimic traumatic brain injury in vitro and in vivo.The results revealed that MALAT1 silencing in vitro inhibited endothelial cell viability and tube formation but increased migration.In MALAT1-deficient mice,endothelial cell proliferation in the injured cortex,functional vessel density and cerebral blood flow were reduced.Bioinformatic analyses and RNA pull-down assays validated enhancer of zeste homolog 2(EZH2)as a downstream factor of MALAT1 in endothelial cells.Jagged-1,the Notch homolog 1(NOTCH1)agonist,reversed the MALAT1 deficiency-mediated impairment of angiogenesis.Taken together,our results suggest that MALAT1 controls the key processes of angiogenesis following traumatic brain injury in an EZH2/NOTCH1-dependent manner. 展开更多
关键词 ANGIOGENESIS controlled cortical impact EZH2 JAGGED-1 LncRNA MALAT1 NOTCH1 oxygen-glucose deprivation traumatic brain injury vascular remodeling
下载PDF
Silencing miRNA-324-3p protects against cerebral ischemic injury via regulation of the GATA2/A1R axis 被引量:3
16
作者 An-Qi Zhang Lu Wang +11 位作者 Yi-Xiu Wang Shan-Shan Hong Yu-Shan Zhong Ru-Yi Yu Xin-Lu Wu Bing-Bing Zhou Qi-Min Yu Hai-Feng Fu Shuang-Dong Chen Yun-Chang Mo Qin-Xue Dai Jun-Lu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第11期2504-2511,共8页
Previous studies have suggested that miR-324-3p is related to the pathophysiology of cerebral ischemia,but the mechanism underlying this relationship is unclea r.In this study,we found that miR-324-3p expression was d... Previous studies have suggested that miR-324-3p is related to the pathophysiology of cerebral ischemia,but the mechanism underlying this relationship is unclea r.In this study,we found that miR-324-3p expression was decreased in patients with acute ischemic stroke and in in vitro and in vivo models of ischemic stro ke.miR-324-3p agomir potentiated ischemic brain damage in rats subjected to middle cerebral artery occlusion,as indicated by increased infarct volumes and cell apoptosis rates and greater neurological deficits.In a PC12 cell oxygen-glucose deprivation/reoxygenation model,a miR-324-3 p mimic decreased cell viability and expression of the anti-apoptotic protein BCL2 and increased expression of the pro-apoptotic protein BAX and rates of cell apoptosis,whereas treatment with a miR-324-3p inhibitor had the opposite effects.Silencing miR-324-3p increased adenosine A1 receptor(A1R)expression thro ugh regulation of GATA binding protein 2(GATA2).These findings suggest that silencing miR-324-3p reduces ischemic brain damage via the GATA2/A1R axis. 展开更多
关键词 acute ischemic stroke adenosine A1 receptor apoptosis cerebral ischemia-reperfusion injury cortical neurons GATA2 middle cerebral artery occlusion miR-324-3p oxygen-glucose deprivation/reoxygenation PC12 cells
下载PDF
The delivery of miR-21a-5p by extracellular vesicles induces microglial polarization via the STAT3 pathway following hypoxia-ischemia in neonatal mice 被引量:2
17
作者 Dan-Qing Xin Yi-Jing Zhao +6 位作者 Ting-Ting Li Hong-Fei Ke Cheng-Cheng Gai Xiao-Fan Guo Wen-Qiang Chen De-Xiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2238-2246,共9页
Extracellular vesicles(EVs)from mesenchymal stromal cells(MSCs)have previously been shown to protect against brain injury caused by hypoxia-ischemia(HI).The neuroprotective effects have been found to relate to the ant... Extracellular vesicles(EVs)from mesenchymal stromal cells(MSCs)have previously been shown to protect against brain injury caused by hypoxia-ischemia(HI).The neuroprotective effects have been found to relate to the anti-inflammatory effects of EVs.However,the underlying mechanisms have not previously been determined.In this study,we induced oxygen-glucose deprivation in BV-2 cells(a microglia cell line),which mimics HI in vitro,and found that treatment with MSCs-EVs increased the cell viability.The treatment was also found to reduce the expression of pro-inflammatory cytokines,induce the polarization of microglia towards the M2 phenotype,and suppress the phosphorylation of selective signal transducer and activator of transcription 3(STAT3)in the microglia.These results were also obtained in vivo using neonatal mice with induced HI.We investigated the potential role of miR-21a-5p in mediating these effects,as it is the most highly expressed miRNA in MSCs-EVs and interacts with the STAT3 pathway.We found that treatment with MSCs-EVs increased the levels of miR-21a-5p in BV-2 cells,which had been lowered following oxygen-glucose deprivation.When the level of miR-21a-5p in the MSCs-EVs was reduced,the effects on microglial polarization and STAT3 phosphorylation were reduced,for both the in vitro and in vivo HI models.These results indicate that MSCs-EVs attenuate HI brain injury in neonatal mice by shuttling miR-21a-5p,which induces microglial M2 polarization by targeting STAT3. 展开更多
关键词 extracellular vesicles HYPOXIA-ISCHEMIA mesenchymal stromal cells MICROGLIA miR-21a-5p NEUROINFLAMMATION oxygen-glucose deprivation STAT3
下载PDF
Krüppel-like factor 7 attenuates hippocampal neuronal injury after traumatic brain injury 被引量:1
18
作者 Wen-Yuan Li Xiu-Mei Fu +6 位作者 Zhen-Dong Wang Zhi-Gang Li Duo Ma Ping Sun Gui-Bo Liu Xiao-Feng Zhu Ying Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期661-672,共12页
Our previous study has shown that the transcription factor Krüppel-like factor 7(KLF7) promotes peripheral nerve regeneration and motor function recovery after spinal cord injury.KLF7 also participates in traumat... Our previous study has shown that the transcription factor Krüppel-like factor 7(KLF7) promotes peripheral nerve regeneration and motor function recovery after spinal cord injury.KLF7 also participates in traumatic brain injury,but its regulatory mechanisms remain poorly understood.In the present study,an HT22 cell model of traumatic brain injury was established by stretch injury and oxygenglucose deprivation.These cells were then transfected with an adeno-associated virus carrying KLF7(AAV-KLF7).The results revealed that,after stretch injury and oxygen-glucose deprivation,KLF7 greatly reduced apoptosis,activated caspase-3 and lactate dehydrogenase,downregulated the expression of the apoptotic markers B-cell lymphoma 2(Bcl-2)-associated X protein(Bax) and cleaved caspase-3,and increased the expression of βIII-tubulin and the antiapoptotic marker Bcl-2.Furthermore,KLF7 overexpression upregulated Janus kinase 2(JAK2) and signal transducer and activator of transcription 3(STAT3) phosphorylation in HT22 cells treated by stretch injury and oxygenglucose deprivation.Immunoprecipitation assays revealed that KLF7 directly participated in the phosphorylation of STAT3.In addition,treatment with AG490,a selective inhibitor of JAK2/STAT3,weakened the protective effects of KLF7.A mouse controlled cortical impact model of traumatic brain injury was then established.At 30 minutes before modeling,AAV-KLF7 was injected into the ipsilateral lateral ventricle.The protein and m RNA levels of KLF7 in the hippocampus were increased at 1 day after injury and recovered to normal levels at 3 days after injury.KLF7 reduced ipsilateral hippocampal atrophy,decreased the injured cortex volume,downregulated Bax and cleaved caspase-3 expression,and increased the number of 5-bromo-2'-deoxyuridine-positive neurons and Bcl-2 protein expression.Moreover,KLF7 transfection greatly enhanced the phosphorylation of JAK2 and STAT3 in the ipsilateral hippocampus.These results suggest that KLF7 may protect hippocampal neurons after traumatic brain injury through activation of the JAK2/STAT3 signaling pathway.The study was approved by the Institutional Review Board of Mudanjiang Medical University,China(approval No.mdjyxy-2018-0012) on March 6,2018. 展开更多
关键词 apoptosis HIPPOCAMPUS JAK2/STAT3 Kruppel-like factor 7 NEUROPROTECTION oxygen-glucose deprivation STRETCH traumatic brain injury
下载PDF
Protective Effect of Salidroside on Mitochondrial Disturbances via Reducing Mitophagy and Preserving Mitochondrial Morphology in OGD-induced Neuronal Injury 被引量:1
19
作者 Cai-ying HU Qian-ying ZHANG +5 位作者 Jie-hui CHEN Bin WEN Wei-jian HANG Kai XU Juan CHEN Ben-hong HE 《Current Medical Science》 SCIE CAS 2021年第5期936-943,共8页
Salidroside is the active ingredient extracted from Rhodiola rosea,and has been reported to show protective effects in cerebral ischemia,but the exact mechanisms of neuronal protective effects are still unrevealed.In ... Salidroside is the active ingredient extracted from Rhodiola rosea,and has been reported to show protective effects in cerebral ischemia,but the exact mechanisms of neuronal protective effects are still unrevealed.In this study,the protective effects of salidroside(1 jimol/L)in ameliorating neuronal injuries induced by oxygen-glucose deprivation(OGD),which is a classical model of cerebral ischemia,were clarified.The results showed that after 8 h of OGD,the mouse hippocampal neuronal cell line HT22 cells showed increased cell death,accompanied with mitochondrial fragmentation and augmented mitophagy.However,the cell viability of HT22 cells showed significant restoration after salidroside treatment.Mitochondrial morphology and mitochondrial function were effectively preserved by salidroside treatment.The protective effects of salidroside were further related to the prevention of mitochondrial over-fission.The results showed that mTOR could be recruited to the mitochondria after salidroside treatment,which might be responsible for inhibiting excessive mitophagy caused by OGD.Thus,salidroside was shown to play a protective role in reducing neuronal death under OGD by safeguarding mitochondrial function,which may provide evidence for further translational studies of salidroside in ischemic diseases. 展开更多
关键词 SALIDROSIDE mitochondria quality control oxygen-glucose deprivation mTOR
下载PDF
Mu-Xiang-You-Fang protects PC12 cells against OGD/R-induced autophagy via AMPK/mTOR signaling pathway
20
作者 MA Hui-xia CHEN Ai-ling +3 位作者 HOU Fan LI Ting-ting ZHU Ya-fei ZHAO Qi-peng 《中国药理学与毒理学杂志》 CAS 北大核心 2019年第9期742-743,共2页
OBJECTIVE Mu-Xiang-You-Fang(MXYF)is a classic prescription of Hui medicine,composed of five herbs,which has been used to treat ischemic stroke for many years.However,the potential pharmacological mecha⁃nisms of MXYF r... OBJECTIVE Mu-Xiang-You-Fang(MXYF)is a classic prescription of Hui medicine,composed of five herbs,which has been used to treat ischemic stroke for many years.However,the potential pharmacological mecha⁃nisms of MXYF remain unclear.The present research is to investigate the neuroprotective effect of MXYF and its role in modulating autophagy via AMPK/mTOR signaling pathway in the PC12 oxygen-glucose deprivation and reperfusion(OGD/R)injury model.METHODS MXYF was extracted by supercritical CO2 fluid extraction apparatus.PC12 OGD/R injury model was established by oxygen-glucose deprivation for 2 h and reperfusion for 24 h.The effects of MXYF on the viability and cytotoxicity of PC12 cells were determined through cell counting kit(CCK-8)assay.Colorimetric method was performed to determine the LDH leakage rate.The calcium concentration was determined by chemical fluorescence method and the mitochondrial membrane potential was determined through flow cytometry.Monodansylcadaverine(MDC)staining was conducted to detect autophagosome formation.The expression of LC3,Beclin1,p62,p-AMPK,ULK1,p-mTOR and p-p70s6k proteins were determined by immunofluorescence and Western blotting analyses.RESULTS MXYF(1,2 and 4 mg·L^-1)could significantly increase the cell viability and mitochondrial membrane potential,while decreased the release of lactate dehydrogenase(LDH)and calcium concentration in PC12 cells.Mechanistic studies showed that MXYF reduced the LC3-II/LC3-I ratio and inhibited the expression of beclin1,p-AMPK and ULK1.In comparison,the expres⁃sion of p-mTOR,p-p70s6k and p62 were significantly enhanced.CONCLUSION MXYF inhibits autophagy after OGD/Rinduced PC12 cell injury through AMPK-mTOR pathway,thus MXYF might have therapeutic potential for treating the ischemic stroke. 展开更多
关键词 Mu-Xiang-You-Fang PC12 cells oxygen-glucose deprivation and reperfusion AUTOPHAGY AMPK/mTOR pathway
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部