期刊文献+
共找到225篇文章
< 1 2 12 >
每页显示 20 50 100
Protective effect of ginsenoside Rg1 on 661W cells exposed to oxygen-glucose deprivation/reperfusion via keap1/nrf2 pathway
1
作者 Ming Zhou Xin-Qi Ma +4 位作者 Yi-Yu Xie Jia-Bei Zhou Xie-Lan Kuang Huang-Xuan Shen Chong-De Long 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第7期1026-1033,共8页
AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the... AIM:To construct an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R)induced injury to the optic nerve and to study the oxidative damage mechanism of ischemia-reperfusion(I/R)injury in 661W cells and the protective effect of ginsenoside Rg1.METHODS:The 661W cells were treated with different concentrations of Na2S2O4 to establish OGD/R model in vitro.Apoptosis,intracellular reactive oxygen species(ROS)levels and superoxide dismutase(SOD)levels were measured at different time points during the reperfusion injury process.The injury model was pretreated with graded concentrations of ginsenoside Rg1.Real-time polymerase chain reaction(PCR)was used to measure the expression levels of cytochrome C(cyt C)/B-cell lymphoma-2(Bcl2)/Bcl2 associated protein X(Bax),heme oxygenase-1(HO-1),caspase9,nuclear factor erythroid 2-related factor 2(nrf2),kelch-like ECH-associated protein 1(keap1)and other genes.Western blot was used to detect the expression of nrf2,phosphorylated nrf2(pnrf2)and keap1 protein levels.RESULTS:Compared to the untreated group,the cell activity of 661W cells treated with Na2S2O4 for 6 and 8h decreased(P<0.01).Additionally,the ROS content increased and SOD levels decreased significantly(P<0.01).In contrast,treatment with ginsenoside Rg1 reversed the cell viability and SOD levels in comparison to the Na_(2)S_(2)O_(4)treated group(P<0.01).Moreover,Rg1 reduced the levels of caspase3,caspase9,and cyt C,while increasing the Bcl2/Bax level.These differences were all statistically significant(P<0.05).Western blot analysis showed no significant difference in the protein expression levels of keap1 and nrf2 with Rg1 treatment,however,Rg1 significantly increased the ratio of pnrf2/nrf2 protein expression compared to the Na_(2)S_(2)O_(4)treated group(P<0.001).CONCLUSION:The OGD/R process is induced in 661W cells using Na_(2)S_(2)O_(4).Rg1 inhibits OGD/R-induced oxidative damage and alleviates the extent of apoptosis in 661W cells through the keap1/nrf2 pathway.These results suggest a potential protective effect of Rg1 against retinal I/R injury. 展开更多
关键词 oxygen-glucose deprivation/reoxygenation ginsenoside Rg1 oxidative stress phosphorylated nrf2
原文传递
Protective effect of mesenchymal stem cell-derived exosomal treatment of hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury 被引量:1
2
作者 Xiao-fang Guo Shuang-shuang Gu +5 位作者 Jun Wang Hao Sun Yu-juan Zhang Peng-fei Yu Jin-song Zhang Lei Jiang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2022年第1期46-53,共8页
BACKGROUND:Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury.Mesenchymal stem cell(MSC)transplantation is used to reduce tissue damage,but exosomes are mor... BACKGROUND:Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury.Mesenchymal stem cell(MSC)transplantation is used to reduce tissue damage,but exosomes are more stable and highly conserved than MSCs.This study was conducted to investigate the therapeutic effects of MSC-derived exosomes(MSC-Exo)on cerebral ischemia-reperfusion injury in an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R),and to explore the underlying mechanisms.METHODS:Primary hippocampal neurons obtained from 18-day Sprague-Dawley rat embryos were subjected to OGD/R treatment,with or without MSC-Exo treatment.Exosomal integration,cell viability,mitochondrial membrane potential,and generation of reactive oxygen species(ROS)were examined.Terminal deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphate nickend labeling(TUNEL)staining was performed to detect neuronal apoptosis.Moreover,mitochondrial function-associated gene expression,Nrf2 translocation,and expression of downstream antioxidant proteins were determined.RESULTS:MSC-Exo attenuated OGD/R-induced neuronal apoptosis and decreased ROS generation(P<0.05).The exosomes reduced OGD/R-induced Nrf2 translocation into the nucleus(2.14±0.65 vs.5.48±1.09,P<0.01)and increased the intracellular expression of antioxidative proteins,including superoxide dismutase and glutathione peroxidase(17.18±0.97 vs.14.40±0.62,and 20.65±2.23 vs.16.44±2.05,respectively;P<0.05 for both).OGD/R significantly impaired the mitochondrial membrane potential and modulated the expression of mitochondrial functionassociated genes,such as PINK,DJ1,LRRK2,Mfn-1,Mfn-2,and OPA1.The abovementioned changes were partially reversed by exosomal treatment of the hippocampal neurons.CONCLUSIONS:MSC-Exo treatment can alleviate OGD/R-induced oxidative stress and dysregulation of mitochondrial function-associated genes in hippocampal neurons.Therefore,MSCExo might be a potential therapeutic strategy to prevent OGD/R-induced neuronal injury. 展开更多
关键词 Mesenchymal stem cells EXOSOMES oxygen-glucose deprivation/reperfusion Reactive oxygen species MITOCHONDRIA
下载PDF
Hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy
3
作者 JIANRONG YANG WAN CHEN +7 位作者 XING ZHOU YAOXUAN LI ZHIHUANG NONG LIYUAN ZHOU XUAN WEI XIAORONG PAN CHUNXIA CHEN WENSHENG LU 《BIOCELL》 SCIE 2022年第1期137-148,共12页
In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose d... In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose deprivation/reperfusion model were established.Cells were divided into a control group,model group,hyperbaric air(HBA)group and HBO group.The cell viability was detected by the CCK8 assay.Hoechst 33342 and PI staining assays and mitochondrial membrane potential(MMP)assays were used to detect cell apoptosis.The ultrastructure of cells,including autophagosomes,lysosomes,and apoptosis,were examined using a transmission electron microscope.The expression of autophagy-related proteins was detected by cellular immunofluorescence and immunocytochemistry.Our results showed that HBO can significantly improve the vitality of damaged PC12 and H9C2 cells caused by oxygen–glucose deprivation/reperfusion.HBO can significantly inhibit apoptosis of PC12 and H9C2 cells caused by oxygenglucose deprivation/reperfusion.Importantly,we found that the protective mechanism of PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion may be related to the inhibition of the autophagy pathway.In this study,the results of cellular immunofluorescence and immunocytochemistry experiments showed that the 4E-BP1,p-AKt and mTOR levels of PC12 and H9C2 cells in the model group decreased,while the levels of LC3B,Atg5 and p53 increased.However,after HBO treatment,these autophagy-related indexes were reversed.In addition,observation of the cell ultrastructure with transmission electron microscopy found that in the model group,a significant increase in the number of autophagic vesicles was observed.In the HBO group,a decrease in autophagic vesicles was observed.The study demonstrated that hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy. 展开更多
关键词 Hyperbaric oxygen PC12 cells H9C2 cells Celoxygen-glucose deprivation/reperfusion Apoptosis AUTOPHAGY
下载PDF
Effects of extracellular vesicles from mesenchymal stem cells on oxygen-glucose deprivation/reperfusioninduced neuronal injury 被引量:5
4
作者 Shuang-shuang Gu Xiu-wen Kang +4 位作者 Jun Wang Xiao-fang Guo Hao Sun Lei Jiang Jin-song Zhang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2021年第1期61-67,共7页
BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-s... BACKGROUND: Small extracellular vesicles (sEVs) from bone marrow mesenchymal stemcells (BMSCs) have shown therapeutic potential for cerebral ischemic diseases. However, themechanisms by which BMSC-derived sEVs (BMSC-sEVs) protect neurons against cerebral ischemia/reperfusion (I/R) injury remain unclear. In this study, we explored the neuroprotective effects ofBMSC-sEVs in the primary culture of rat cortical neurons exposed to oxygen-glucose deprivation andreperfusion (OGD/R) injury.METHODS: The primary cortical neuron OGD/R model was established to simulate the processof cerebral I/R in vitro. Based on this model, we examined whether the mechanism through whichBMSC-sEVs could rescue OGD/R-induced neuronal injury.RESULTS: BMSC-sEVs (20 μg/mL, 40 μg/mL) significantly decreased the reactive oxygenspecies (ROS) productions, and increased the activities of superoxide dismutase (SOD) and glutathioneperoxidase (GPx). Additionally, BMSC-sEVs prevented OGD/R-induced neuronal apoptosis in vivo, asindicated by increased cell viability, reduced lactate dehydrogenase (LDH) leakage, decreased terminaldeoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining-positivecells, down-regulated cleaved caspase-3, and up-regulated Bcl-2/Bax ratio. Furthermore, Westernblot and flow cytometry analysis indicated that BMSC-sEV treatment decreased the expression ofphosphorylated calcium/calmodulin-dependent kinase II (p-CaMK II)/CaMK II, suppressed the increaseof intracellular calcium concentration ([Ca2+]i) caused by OGD/R in neurons.CONCLUSIONS: These results demonstrate that BMSC-sEVs have signifi cant neuroprotectiveeff ects against OGD/R-induced cell injury by suppressing oxidative stress and apoptosis, and Ca2+/CaMK II signaling pathways may be involved in this process. 展开更多
关键词 oxygen-glucose deprivation and reperfusion Cortical neurons Oxidative stress Small extracellular vesicles
下载PDF
Dehydrocostuslactone protects against oxygen-glucose deprivation/reperfusion-induced injury by inhibiting autophagy and apoptosis in PC12 cells
5
作者 MA Hui-xia HOU Fan +5 位作者 ZHANG Zheng-jun CHEN Ai-ling ZHU Ya-fei Li Ting-ting ZHANG Xin-hui ZHAO Qi-peng 《中国药理学与毒理学杂志》 CAS 北大核心 2019年第9期692-693,共2页
OBJECTIVE TO investigate the neural protection of dehydrocostus lactone(DHL)against neuronal injury induced by oxygen and glucose deprivation/reperfusion(OGD/R)in differentiated PC12 cells.METHODS We used a cellular m... OBJECTIVE TO investigate the neural protection of dehydrocostus lactone(DHL)against neuronal injury induced by oxygen and glucose deprivation/reperfusion(OGD/R)in differentiated PC12 cells.METHODS We used a cellular model of 2 h of OGD and 24 h of reperfusion to mimic cerebral ischemia-reperfusion injury.Cell viability was used to reflect the degree of OGD/R-induced injury.Cells were treated with DHL during the reperfusion phase.Cell Counting Kit(CCK-8)and LDH assays were performed to determine the optimal dose of DHL and cell viability.Flow cytometry analysis and Monodansylcadaverine(MDC)staining were then conducted to detect apoptosis rate and autophagosome formation after OGD/R in PC12 cells.Immunofluorescence and Western blotting analyses were used to detect the expres⁃sion of proteins associated with autophagy and apoptosis.RESULTS OGD/R significantly decreased cell viability and increased apoptosis rate.The expression levels of autophagy-related proteins,namely,LC3 and Beclin-1,and apoptosisrelated proteins,namely,Bax and caspase-3 increased,but that of the anti-apoptosis Bcl-2 protein decreased.However,DHL attenuated OGD/R-induced neuronal injury through inhibition of apoptosis and autophagy properties by modulating au⁃tophagy-associated proteins(LC3 and Beclin-1)and apoptosis-modulating proteins(caspase-3 and Bcl-2/Bax).CONCLU⁃SION Our data provide an evidence for the neuroprotective effect of DHL against ischemic neuronal injury.Hence,DHL could be a promising candidate for treatment of ischemic stroke. 展开更多
关键词 dehydrocostuslactone oxygen and glucose deprivation/reperfusion APOPTOSIS AUTOPHAGY
下载PDF
Neuroprotective effect and mechanism of daidzein in oxygen-glucose deprivation/reperfusion injury based on experimental approaches and network pharmacology
6
作者 Ming-Hua Xian Si-Kai Zhan +4 位作者 Ke-Ning Zheng Qu-liu Ke-Ning Li Jia-Yin Liang Shu-Mei Wang 《Traditional Medicine Research》 2021年第5期10-19,共10页
Background:Daidzein,phytoestrogens derived from the Pueraria lobata(Willd.)Ohwi root used in traditional Chinese medicine,has a wide range of biological activities,including antioxidant,anti-inflammatory,and neuroprot... Background:Daidzein,phytoestrogens derived from the Pueraria lobata(Willd.)Ohwi root used in traditional Chinese medicine,has a wide range of biological activities,including antioxidant,anti-inflammatory,and neuroprotection.However,the neuroprotective role of daidzein in oxygen-glucose deprivation/reperfusion injury and its underlying mechanism are still unknown.Methods:In this study,we used pheochromocytoma cells induced by oxygen-glucose deprivation and reperfusion to study the potential effect in the protection of the nerve cells.Then,we used molecular docking simulation and network pharmacology to predict the possible targets and pharmacological pathways of daidzein.Western blot was used to verify the expression of target proteins with or without adding the inhibitors.Results:After daidzein treatment,cell vitality had an upward trend(P<0.05)and the release of lactate dehydrogenase had a downward trend(P<0.01)in dose-dependent compared with the model group by exposure to oxygen-glucose deprivation and reperfusion.Several core targets were analyzed through network pharmacology and molecular docking including catalase,peroxisome proliferator-activated receptor gamma,vascular endothelial growth factor A,interleukin-6,tumor necrosis factor,nitric oxide synthase 3,prostaglandin-endoperoxide synthase 2,and RAC-alpha serine/threonine kinase 1.These results suggest that catalase may be a first-ranked target for the neuroprotective role of daidzein.Gene Ontology enrichment analysis indicated the pathways mainly contained molecule metabolic process,while Kyoto Encyclopedia of Genes and Genomes enrichment analysis focus on pathways in terms of inflammation such as tumor necrosis factor signal pathway.Then,Western blot results showed that daidzein had a significant increase on the expression of protein catalase(P<0.01).Daidzein reversed catalase level alterations after oxygen-glucose deprivation reperfusion injury in a dose-dependent manner which was consistent with the catalase antagonists-based experiments.Conclusion:These outcomes provide new insights into the neuroprotective effect and mechanism of daidzein in oxygen-glucose deprivation/reperfusion injury. 展开更多
关键词 DAIDZEIN NEUROPROTECTION CATALASE oxygen-glucose deprivation and reperfusion network pharmacology
下载PDF
Intervention Timing and Effect of PJ34 on Astrocytes During Oxygen-glucose Deprivation/reperfusion and Cell Death Pathways
7
作者 蔡川 张睿 +3 位作者 黄巧英 曹旭 邹良玉 褚晓凡 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第3期397-404,共8页
Poly(ADP-ribose) polymerase-1(PARP-1) plays as a double edged sword in cerebral ischemia-reperfusion, hinging on its effect on the intracellular energy storage and injury severity, and the prognosis has relationship w... Poly(ADP-ribose) polymerase-1(PARP-1) plays as a double edged sword in cerebral ischemia-reperfusion, hinging on its effect on the intracellular energy storage and injury severity, and the prognosis has relationship with intervention timing. During ischemia injury, apoptosis and oncosis are the two main cell death pathway sin the ischemic core. The participation of astrocytes in ischemia-reperfusion induced cell death has triggered more and more attention. Here, we examined the protective effects and intervention timing of the PARP-1 inhibitor PJ34, by using a mixed oxygen-glucose deprivation/reperfusion(OGDR) model of primary rat astrocytes in vitro, which could mimic the ischemia-reperfusion damage in the "ischemic core". Meanwhile, cell death pathways of various PJ34 treated astrocytes were also investigated. Our results showed that PJ34 incubation(10 μmol/L) did not affect release of lactate dehydrogenase(LDH) from astrocytes and cell viability or survival 1 h after OGDR. Interestingly, after 3 or 5 h OGDR, PJ34 significantly reduced LDH release and percentage of PI-positive cells and increased cell viability, and simultaneously increased the caspase-dependent apoptotic rate. The intervention timing study demonstrated that an earlier and longer PJ34 intervention during reperfusion was associated with more apparent protective effects. In conclusion, earlier and longer PJ34 intervention provides remarkable protective effects for astrocytes in the "ischaemic core" mainly by reducing oncosis of the astrocytes, especially following serious OGDR damage. 展开更多
关键词 缺血再灌注损伤 星形胶质细胞 细胞死亡 核糖 caspase 细胞存活率 保护作用
下载PDF
Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen-glucose deprivation reperfusion 被引量:12
8
作者 Zuo-Yan Sun Fu-Jiang Wang +6 位作者 Hong Guo Lu Chen Li-Juan Chai Rui-Lin Li Li-Min Hu Hong Wang Shao-Xia Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期783-793,共11页
Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotect... Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway. 展开更多
关键词 nerve REGENERATION SHUXUETONG injection brain MICROVASCULAR endothelial cells oxygen-glucose deprivation/reperfusion tight junction proteins mitochondrial function inflammatory factors blood-brain barrier neuroprotection neural REGENERATION
下载PDF
Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion 被引量:5
9
作者 Guo-Qian He Wen-Ming Xu +3 位作者 Hui-Juan Liao Chuan Jiang Chang-Qing Li Wei Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1977-1985,共9页
HECT, UBA and WWE domain-containing 1(Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, includin... HECT, UBA and WWE domain-containing 1(Huwe1), an E3 ubiquitin ligase involved in the ubiquitin-proteasome system, is widely expressed in brain tissue. Huwe1 is involved in the turnover of numerous substrates, including p53, Mcl-1, Cdc6 and N-myc, thereby playing a critical role in apoptosis and neurogenesis. However, the role of Huwe1 in brain ischemia and reperfusion injury remains unclear. Therefore, in this study, we investigated the role of Huwe1 in an in vitro model of ischemia and reperfusion injury. At 3 days in vitro, primary cortical neurons were transduced with a control or shRNA-Huwe1 lentiviral vector to silence expression of Huwe1. At 7 days in vitro, the cells were exposed to oxygen-glucose deprivation for 3 hours and reperfusion for 24 hours. To examine the role of the c-Jun N-terminal kinase(JNK)/p38 pathway, cortical neurons were pretreated with a JNK inhibitor(SP600125) or a p38 MAPK inhibitor(SB203508) for 30 minutes at 7 days in vitro, followed by ischemia and reperfusion. Neuronal apoptosis was assessed by TUNEL assay. Protein expression levels of JNK and p38 MAPK and of apoptosis-related proteins(p53, Gadd45 a, cleaved caspase-3, Bax and Bcl-2) were measured by western blot assay. Immunofluorescence labeling for cleaved caspase-3 was performed. We observed a significant increase in neuronal apoptosis and Huwe1 expression after ischemia and reperfusion. Treatment with the shRNA-Huwe1 lentiviral vector markedly decreased Huwe1 levels, and significantly decreased the number of TUNEL-positive cells after ischemia and reperfusion. The silencing vector also downregulated the pro-apoptotic proteins Bax and cleaved caspase-3, and upregulated the anti-apoptotic proteins Gadd45 a and Bcl-2. Silencing Huwe1 also significantly reduced p-JNK levels and increased p-p38 levels. Our findings show that downregulating Huwe1 affects the JNK and p38 MAPK signaling pathways as well as the expression of apoptosis-related genes to provide neuroprotection during ischemia and reperfusion. All animal experiments and procedures were approved by the Animal Ethics Committee of Sichuan University, China in January 2018(approval No. 2018013). 展开更多
关键词 nerve REGENERATION ischemic stroke oxygen-glucose deprivation and reperfusion ischemia/reperfusion cortical neuron ubiquitin proteasome system Huwe1 APOPTOSIS therapeutic targets CELL culture CELL death neural REGENERATION
下载PDF
Neuroprotective effects of salvianolic acid B against oxygen-glucose deprivation/reperfusion damage in primary rat cortical neurons 被引量:30
10
作者 WANG Yun JIANG Yu-feng +2 位作者 HUANG Qi-fu GE Gui-ling CUI Wei 《Chinese Medical Journal》 SCIE CAS CSCD 2010年第24期3612-3619,共8页
背景服的 ischemia-reperfusion 损害是为在 ischemic 的神经原的损失的主要原因脑血管的疾病。因此,深深地理解它的致病并且发现一个新目标是要解决的关键问题。这研究试图调查对氧葡萄糖 deprivation/reperfusion (OGD/RP ) 的 salvi... 背景服的 ischemia-reperfusion 损害是为在 ischemic 的神经原的损失的主要原因脑血管的疾病。因此,深深地理解它的致病并且发现一个新目标是要解决的关键问题。这研究试图调查对氧葡萄糖 deprivation/reperfusion (OGD/RP ) 的 salvianolic 酸 B (SalB ) 的效果在主要老鼠损坏的 neuroprotective 外皮的 neurons.Methods 新生的威斯特老鼠的主要文化随机被划分成控制组, OGD/RP 组和 SalB 处理组(10 mg/L ) 。房间模型被分别地剥夺氧和葡萄糖 3 个小时和灌注 3 个小时和 24 个小时建立。神经原生存能力被 MTT 试金决定。细胞的反应的氧种类(ROS ) 的水平被荧光灯的标记检测方法和纺纱套住技术分别地。neuronal Mn-superoxide dismutase (Mn 草皮) 的活动,过氧化氢酶(猫) 和谷胱甘肽 peroxidase (GSH-PX ) 是由 chromatometry 的 assayed。线粒体膜潜力(m) 是流动 cytometry 分析的份量上。细胞色素 c 的版本率被西方的弄污检测。neuronal 超微结构被传播电子显微镜学观察。统计意义被 Student-Newman-Keuls test.Results OGD/RP 跟随的变化(ANOVA ) 的分析评估增加了细胞的 ROS 的水平,但是减少房间生存能力和 Mn 草皮,猫和 GSH-PX 的活动;SalB 处理显著地减少了 ROS (P 0.05 ) 的水平;并且提高了房间生存能力(P 0.05 ) 和这些 antioxidases (P 0.05 ) 的活动。另外, OGD/RP 导致了 m 的荧光价值减少并且到上升的细胞色素 c 的版本率尤其是;SalB 显著地提高了 m (P 0.01 ) 的水平并且压抑细胞色素 c (P 0.05 ) 的版本率;它也改善了 neuronal 词法 injury.Conclusion SalB 的 neuroprotection 可以被归因于 ROS 的消除和 apoptosis 的抑制。 展开更多
关键词 WISTAR大鼠 缺血再灌注损伤 神经保护作用 皮层神经元 丹酚酸B 葡萄糖 氧气 锰超氧化物歧化酶
原文传递
Corrigendum: Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion
11
《Neural Regeneration Research》 SCIE CAS CSCD 2021年第3期530-530,共1页
In the article titled“Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion”,published on pages 1977–1985,Issue 11,Volume 14 of Neural Regeneration Research(He ... In the article titled“Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion”,published on pages 1977–1985,Issue 11,Volume 14 of Neural Regeneration Research(He et al.,2019),the western blot bands of p-JNK in Figure 3C appeared incorrectly,and the correct Figure 3 is shown as follows. 展开更多
关键词 reperfusion deprivation FIGURE
下载PDF
Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation 被引量:1
12
作者 Qiu-Yue Zhai Yuan-Hua Ye +4 位作者 Yu-Qian Ren Zhen-Hua Song Ke-Li Ge Bao-He Cheng Yun-Liang Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期618-625,共8页
Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.... Studies on ischemia/reperfusion(I/R)injury suggest that exogenous neural stem cells(NSCs)are ideal candidates for stem cell therapy reperfusion injury.However,NSCs are difficult to obtain owing to ethical limitations.In addition,the survival,differentiation,and proliferation rates of transplanted exogenous NSCs are low,which limit their clinical application.Our previous study showed that neuregulin1β(NRG1β)alleviated cerebral I/R injury in rats.In this study,we aimed to induce human umbilical cord mesenchymal stem cells into NSCs and investigate the improvement effect and mechanism of NSCs pretreated with 10 nM NRG1βon PC12 cells injured by oxygen-glucose deprivation/reoxygenation(OGD/R).Our results found that 5 and 10 nM NRG1βpromoted the generation and proliferation of NSCs.Co-culture of NSCs and PC12 cells under condition of OGD/R showed that pretreatment of NSCs with NRG1βimproved the level of reactive oxygen species,malondialdehyde,glutathione,superoxide dismutase,nicotinamide adenine dinucleotide phosphate,and nuclear factor erythroid 2-related factor 2(Nrf2)and mitochondrial damage in injured PC12 cells;these indexes are related to ferroptosis.Research has reported that p53 and solute carrier family 7 member 11(SLC7A11)play vital roles in ferroptosis caused by cerebral I/R injury.Our data show that the expression of p53 was increased and the level of glutathione peroxidase 4(GPX4)was decreased after RNA interference-mediated knockdown of SLC7A11 in PC12 cells,but this change was alleviated after co-culturing NSCs with damaged PC12 cells.These findings suggest that NSCs pretreated with NRG1βexhibited neuroprotective effects on PC12 cells subjected to OGD/R through influencing the level of ferroptosis regulated by p53/SLC7A11/GPX4 pathway. 展开更多
关键词 ferroptosis p53 SLC7A11 GPX4 human umbilical cord-mesenchymal stem cells neural stem cells neuregulin1β NEUROPROTECTION oxygen-glucose deprivation/reoxygenation PC12 cell
下载PDF
Dynamic changes in proprotein convertase 2 activity in cortical neurons after ischemia/reperfusion and oxygen-glucose deprivation
13
作者 Shuqin Zhan An Zhou +1 位作者 Chelsea Piper Tao Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期83-89,共7页
In this study, a rat model of transient focal cerebral ischemia was established by performing 100 minutes of middle cerebral artery occlusion, and an in vitro model of experimental oxygen-glucose deprivation using cul... In this study, a rat model of transient focal cerebral ischemia was established by performing 100 minutes of middle cerebral artery occlusion, and an in vitro model of experimental oxygen-glucose deprivation using cultured rat cortical neurons was established. Proprotein convertase 2 activity gradually decreased in the ischemic cortex with increasing duration of reperfusion. In cultured rat cortical neurons, the number of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling-positive neurons significantly increased and proprotein convertase 2 activity also decreased gradually with increasing duration of oxygen-glucose deprivation. These experimental findings indicate that proprotein convertase 2 activity decreases in ischemic rat cortex after reperfusion, as well as in cultured rat cortical neurons after oxygen-glucose deprivation. These changes in enzyme activity may play an important pathological role in brain injury. 展开更多
关键词 缺血 再灌注 皮质神经元 转化酶 蛋白 动态变化 皮层神经元 大鼠模型 脱氧核苷酸
下载PDF
Establishment of oxygen glucose deprivation reperfusion model of senescent SH-SY5Y cells
14
作者 ZHANG Qiao-tian JIANG Chang-yue +3 位作者 ZHU GE Xiang-zhen LI De-li HU Wan-Xiang XIE Lu 《Journal of Hainan Medical University》 CAS 2023年第6期1-7,共7页
Obejective:To explore the establishment of an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells.Methods:SH-SY5Y cells were randomly divided into control(D-galactose 0 mmol/L group),D-galactose(25... Obejective:To explore the establishment of an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells.Methods:SH-SY5Y cells were randomly divided into control(D-galactose 0 mmol/L group),D-galactose(25 mmol/L,50 mmol/L,100 mmol/L,200 mmol/L,400 mmol/L)groups,and treated with corresponding concentrations of D-galactose for 48 h.The changes of cell morphology,β-galactosidase,the cell morphology,β-galactosidase activity by microscopic observation,cell proliferation rate by EdU kit and cell survival rate by CCK-8 assay were used to determine the decaying concentration of D-galactose and to establish the senescence model.The senescent SH-SY5Y cells were randomly divided into control group(oxygen glucose deprivation without treatment group),oxygen glucose deprivation treatment(0.5 h,1 h,1.5 h,2 h)group,followed by re-glucose reoxygenation for 24 h,and CCK-8 assay for the survival rate of senescent SH-SY5Y cells.Results:There were no significant changes in cell morphology and β-gal activity in the 25 mmol/L and 50 mmol/L groups compared with the control group(P>0.05),cytosolic hypertrophy was seen in the cells of the 100 mmol/L group,chromatin fixation in the cells of the 200 mmol/L group,and massive vacuolization in the cells of the 400 mmol/L group;the positive rate ofβ-galactosidase staining in the cells of the(100-400 mmol/L)group was significantly higher compared with the control group(P<0.05),with little difference between the 100 mmol/L and 200 mmol/L groups(P>0.05);the cell proliferation ability of the(100-400 mmol/L)group was significantly decreased in a concentration-dependent manner(P<0.05);the cell survival rate was decreased in a concentration-dependent manner(P<0.05),with IC_(50) between 100 mmol/L and 200 mmol/L.The survival of senescent SH-SY5Y cells showed a time-dependent decrease in oxygen-glucose deprivation(P<0.05),with an IC_(50) close to 1 h.Conclusion:D-gal concentration of 100 mmoL/L and 48 h of cell action could establish a survival rate of about 50%of senescent SH-SY5Y cells,and oxygen glucose deprivation of senescent SH-SY5Y cells for 1 h and reperfusion for 24 h could establish an oxygen glucose deprivation/reperfusion model of senescent SH-SY5Y cells with a survival rate close to 50%. 展开更多
关键词 Cerebral ischemia-reperfusion injury Oxygen glucose deprivation reperfusion AGING D-GALACTOSE SH-SY5Y cell
下载PDF
IcarisideⅡ alleviates oxygen-glucose deprivation and reoxygenation-induced PC12 celloxidative injury by activating Nrf2 / SIRT3signaling pathway 被引量:11
15
作者 FENG Lin-ying GAO Jian-mei +2 位作者 LIU Yuan-gui SHI Jing-shan GONG Qi-hai 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期667-668,共2页
OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxy... OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generation both in the intracellular and mitochondria,as well as restored MMP.It was also worthy to note that ICS Ⅱ decreased the expressions of cytoplasmNrf2,Keap1,Bax and the level of cleaved-caspase3,whereas,it increased the expressions of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).CONCLUSION ICSⅡ reduced OGD/Rinduced oxidative damage in PC12 cells under the laboratory conditions,and its underlying mechanism may be related to the regulation of Nrf2/SIRT3 signaling pathway. 展开更多
关键词 icariside oxygen-glucose deprivation REOXYGENATION oxidative injury apoptosis nuclear factor ERYTHROID 2-related factors SILENT information regulator 3
下载PDF
Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation 被引量:5
16
作者 Tao Pan Qiu-Jiao Zhu +5 位作者 Li-Xiao Xu Xin Ding Jian-Qin Li Bin Sun Jun Hua Xing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第11期2154-2161,共8页
Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression... Transient receptor potential melastatin 2(TRPM2) is an important ion channel that represents a potential target for treating injury caused by cerebral ischemia. However, it is unclear whether reducing TRPM2 expression can help repair cerebral injury, and if so what the mechanism underlying this process involves. This study investigated the protective effect of reducing TRPM2 expression on pheochromocytoma(PC12) cells injured by oxygen-glucose deprivation(OGD). PC12 cells were transfected with plasmid encoding TRPM2 shRNAS, then subjected to OGD by incubation in glucose-free medium under hypoxic conditions for 8 hours, after which the cells were allowed to reoxygenate for 24 hours. Apoptotic cells, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels were detected using flow cytometry. The relative expression of C-X-C motif chemokine ligand 2(CXCL2), NACHT, LRR, and PYD domain–containing protein 3(NALP3), and caspase-1 were detected using fluorescence-based quantitative reverse transcription-polymerase chain reaction and western blotting. The rates of apoptosis, mitochondrial membrane potentials, reactive oxygen species levels, and cellular calcium levels in the TRPM2-shRNA + OGD group were lower than those observed in the OGD group. Taken together, these results suggest that TRPM2 knockdown reduces OGD-induced neuronal injury, potentially by inhibiting apoptosis and reducing oxidative stress levels, mitochondrial membrane potentials, intracellular calcium concentrations, and NLRP3 inflammasome activation. 展开更多
关键词 apoptosis calcium caspase-1 NLRP3 mitochondrial IMPAIRMENT oxidative stress oxygen-glucose deprivation PC12 shRNA TRPM2
下载PDF
Proprotein convertase 1/3-mediated down-regulation of brain-derived neurotrophic factor in cortical neurons induced by oxygen-glucose deprivation 被引量:3
17
作者 Xiang-Yang Zhang Feng Liu +2 位作者 Yan Chen Wei-Chun Guo Zhao-Hui Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第6期1066-1070,共5页
Brain-derived neurotrophic factor(BDNF)has robust effects on synaptogenesis,neuronal differentiation and synaptic transmission and plasticity.The maturation of BDNF is a complex process.Proprotein convertase 1/3(PC1/3... Brain-derived neurotrophic factor(BDNF)has robust effects on synaptogenesis,neuronal differentiation and synaptic transmission and plasticity.The maturation of BDNF is a complex process.Proprotein convertase 1/3(PC1/3)has a key role in the cleavage of protein precursors that are directed to regulated secretory pathways;however,it is not clear whether PC1/3 mediates the change in BDNF levels caused by ischemia.To clarify the role of PC1/3 in BDNF maturation in ischemic cortical neurons,primary cortical neurons from fetal rats were cultured in a humidified environment of 95%N_2 and 5%CO_2 in a glucose-free Dulbecco's modified Eagle's medium at 37℃for3 hours.Enzyme-linked immunosorbent assays and western blotting showed that after oxygen-glucose deprivation,the secreted and intracellular levels of BDNF were significantly reduced and the intracellular level of PC1/3 was decreased.Transient transfection of cortical neurons with a PC1/3 overexpression plasmid followed by oxygen-glucose deprivation resulted in increased PC1/3 levels and increased BDNF levels.When levels of the BDNF precursor protein were reduced,the concentration of BDNF in the culture medium was increased.These results indicate that PC 1/3 cleavage of BDNF is critical for the conversion of pro-BDNF in rat cortical neurons during ischemia.The study was approved by the Animal Ethics Committee of Wuhan University School of Basic Medical Sciences. 展开更多
关键词 cortical neuron ischemia NEUROTROPHIN oxygen-glucose deprivation precursor protein of BRAIN-DERIVED NEUROTROPHIC factor PROPROTEIN CONVERTASE PROPROTEIN CONVERTASE 1/3
下载PDF
Protective effect of Cordyceps sinensis extract on rat brain microvascular endothelial cells injured by oxygen-glucose deprivation 被引量:1
18
作者 Xue Bai Yibo Tang +7 位作者 Yan Lin Yuqing Zhao Tianyang Tan Shuyan Wang Meiqi Liu Zhenghui Chang Ying Liu Zhenquan Liu 《Journal of Traditional Chinese Medical Sciences》 2018年第1期64-71,共8页
Objective:To investigate the protective effect of Cordyceps sinensis extract (CSE)on injury of primary cultured rat brain microvascular endothelial cells (rBMECs) induced by oxygen-glucose deprivation (OGD).Methods:We... Objective:To investigate the protective effect of Cordyceps sinensis extract (CSE)on injury of primary cultured rat brain microvascular endothelial cells (rBMECs) induced by oxygen-glucose deprivation (OGD).Methods:We isolated and cultured primary rBMECs in order to establish an in vitro OGD model.Cellular activity was detected using a cell counting kit to determine the appropriate dosage.The rBMECs were divided into control,model,low-,mid-,and high-dose (5,10,20 μg.mL-1) CSE groups under OGD for 6 hours.CSE was dissolved in cell culture medium to the appropriate concentration,passed through a 0.22 μm sterile filter,and administered for 12 hours before and during OGD.Cellular morphology was observed under a microscope.Lactate dehydrogenase level in cultural supernatant,superoxide dismutase activity,and the content of nitric oxide and malondialdehyde in cells were tested by colorimetric methods.Levels of tumor necrosis factor-α and interleukin-1 beta in cells were determined by enzyme-linked immunosorbent assay.Results:After 12-hour administration of CSE at the concentration of 5,10,20 iμg.mL-1 before and during OGD,compared with the model group,the CSE groups obviously alleviated the damage of rBMECs induced by OGD,inhibited the apoptosis and the necrosis of the cells,and improved cellular morphology of rBMECs.Additionally,compared with the model group,CSE also restrained lactate dehydrogenase leakage in hypoxic cells (P <.01),significantly increased superoxide dismutase activity (P <.05),and reduced the levels of nitric oxide,malondialdehyde,tumor necrosis factor-α,and interleukin-1 beta (P <.05).Conclusion:C.sinensis extract plays a significant role in protecting injured primary cultured rBMECs induced by OGD.The mechanism may be related with the increase of cellular antioxidative capacity and anti-inflammatory effect. 展开更多
关键词 CORDYCEPS sinensis EXTRACT Brain MICROVASCULAR endothelial cells oxygen-glucose deprivation ANTI-OXIDATION Anti-inflammation
下载PDF
Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation 被引量:8
19
作者 Jing-xian Wu Lu-yu Zhang +3 位作者 Yan-lin Chen Shan-shan Yu Yong Zhao Jing Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期481-489,共9页
Recent studies have shown that induced expression of endogenous antioxidative enzymes through activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2(Nrf2) pathway may be a neuroprot... Recent studies have shown that induced expression of endogenous antioxidative enzymes through activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2(Nrf2) pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 μM curcumin or post-treated with 5 μM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thioredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neuroprotection after cerebral ischemia. 展开更多
关键词 抗氧化能力 皮质神经元 姜黄素 后处理 预处理 缺氧 WESTERN印迹 缺血/再灌注
下载PDF
Rac1 relieves neuronal injury induced by oxygen-glucose deprivation and re-oxygenation via regulation of mitochondrial biogenesis and function
20
作者 Ping-Ping Xia Fan Zhang +5 位作者 Cheng Chen Zhi-Hua Wang Na Wang Long-Yan Li Qu-Lian Guo Zhi Ye 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第10期1937-1946,共10页
Certain microRNAs(miRNAs)can function as neuroprotective factors after reperfusion/ischemia brain injury.miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negat... Certain microRNAs(miRNAs)can function as neuroprotective factors after reperfusion/ischemia brain injury.miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negatively regulating the activity of Rac1,but it remains unclear whether miRNA-142-3p also participates in cerebral ischemia/reperfusion injury.In this study,a model of oxygen-glucose deprivation/re-oxygenation in primary cortical neurons was established and the neurons were transfected with miR-142-3p agomirs or miR-142-3p antagomirs.miR-142-3p expression was down-regulated in neurons when exposed to oxygen-glucose deprivation/re-oxygenation.Over-expression of miR-142-3p using its agomir remarkably promoted cell death and apoptosis induced by oxygen-glucose deprivation/re-oxygenation and improved mitochondrial biogenesis and function,including the expression of peroxisome proliferator-activated receptor-γcoactivator-1α,mitochondrial transcription factor A,and nuclear respiratory factor 1.However,the opposite effects were produced if miR-142-3p was inhibited.Luciferase reporter assays verified that Rac Family Small GTPase 1(Rac1)was a target gene of miR-142-3p.Over-expressed miR-142-3p inhibited NOX2 activity and expression of Rac1 and Rac1-GTPase(its activated form).miR-142-3p antagomirs had opposite effects after oxygen-glucose deprivation/re-oxygenation.Our results indicate that miR-142-3p down-regulates the expression and activation of Rac1,regulates mitochondrial biogenesis and function,and inhibits oxygen-glucose deprivation damage,thus exerting a neuroprotective effect.The experiments were approved by the Committee of Experimental Animal Use and Care of Central South University,China(approval No.201703346)on March 7,2017. 展开更多
关键词 BIOGENESIS ischemia/reperfusion injury MICRORNAS miR-142-3p MITOCHONDRIA NEUROPROTECTION NOX2 oxygen-glucose deprivation RAC1
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部