Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti...Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ...Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis.展开更多
Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and str...Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and structural stability that limit the performance.The core-shell semiconductorgraphene(CSSG)nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties.This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance.It starts with the classification of the CSSG nanoarchitectures by the dimensionality.Then,the construction methods under internal and external driving forces were introduced and compared with each other.Afterward,the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed,with a focus on their role in photocatalysis.It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application.By harnessing the synergistic capabilities of the CSSG architectures,we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.展开更多
In recent years,there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light,owing to their potential for energy and environmental applicat...In recent years,there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light,owing to their potential for energy and environmental applications.Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses.Anthraquinones(AQs)serve as redox-active electron transfer mediators and photochemically active organic photosensitizers,effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors.AQs offer advantages such as abundant raw materials,controlled preparation,excellent electron transfer capabilities,and photosensitivity,with applications spanning the energy,medical,and environmental sectors.Despite their utility,comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking.In this review,we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis,particularly in addressing key environmental challenges like clean energy production,antibacterial action,and pollutant degradation.However,AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination.To mitigate these issues,the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications.Additionally,future research directions are proposed to deepen the understanding of AQs'theoretical mechanisms and to provide practical applications for wastewater treatment.This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.展开更多
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is...Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))is emerging as a promising visible-light photocatalyst while the low crystallinity with sluggish charge separation/migration dynamics significantly restricts its practical applicat...Graphitic carbon nitride(g-C_(3)N_(4))is emerging as a promising visible-light photocatalyst while the low crystallinity with sluggish charge separation/migration dynamics significantly restricts its practical applications.Currently,synthesizing highly crystalline g-C_(3)N_(4) with sufficient surface activities still remains challenging.Herein,different from using alkali molten salts which is commonly reported,we propose an approach for synthesis of highly crystalline g-C_(3)N_(4) with FeCl3/KCl rock/molten mixed salts.The rock salt can serve as the structure-directing template while molten salt provides the required liquid medium for re-condensation.Intriguingly,the synthesized photocatalyst showed further enhanced crystallinity and improved surface area along with high p/p*excitation compared with crystalline C_(3)N_(4) prepared from conventional molten-salt methods.These catalytically advantageous features lead to its superior photocatalytic and piezocatalytic activities with a high reactivity for overall water splitting that is not commonly reported for C_(3)N_(4).This work provides an effective strategy for structural optimization of organic semiconductor based materials and may inspire new ideas for the design of advanced photocatalysts.展开更多
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ...It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.展开更多
4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a...4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a crucial derivative of BODIPY scaffold that has the favorable optical properties and a significant spectral redshift. The photophysical properties can be tuned by molecular design, and the attenuation path of the excited state energy release of absorbed light energy can be well controlled via structural modifications, enabling tailored application. It has been extensively employed in life medicine fields including fluorescence imaging diagnosis, photodynamic therapy photosensitizer and photothermal therapy reagent and so forth. Extensive research and review have been performed in these areas. However, BODIPYs/aza-BODIPYs have a significant role in energy, catalysis, optoelectronics, photo-responsive materials and other fields. Nevertheless, there are relatively few studies and reviews in these fields on the modification and application based on BODIPY/aza-BODIPY scaffold. Herein, in this review we summarized the application of BODIPY/aza-BODIPY in the aforementioned fields, with the molecular regulation of dye as the foundation and the utilization in the above fields as the objective, in the intention of providing inspiration for the exploration of innovative BODIPY/aza-BODIPY research in the field of light resource conversion and functional materials.展开更多
We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely C...We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely COF-909-Cu,-Co or-Fe,where for the first time the diffusio-phoretic propulsion was utilized to design COF-based micro/nanomotors.The mechanism studies revealed that the metal ions decorated in the COF-909 backbone could promote the separation of electron and holes and trigger the production of sufficient ionic and reactive oxygen species under visible light irradiation.In this way,strong light-induced self-diffusiophoretic effect is achieved,resulting in good dispersion of COFs.Among them,COF-909-Fe showed the highest dispersion performance,along with a drastic decrease in particle size from 5μm to500 nm,within only 30 min light irradiation,which is inaccessible by using traditional magnetic stirring or ultrasonication methods.More importantly,benefiting from the outstanding dispersion efficiency,COF-909-Fe micro/nanomotors were demonstrated to be efficient in photocatalytic degradation of tetracycline,about 8 times faster than using traditional magnetic stirring method.This work opens up a new avenue to prepare isolated nanosized COFs in a high-fast,simple,and green manner.展开更多
The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of c...The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.展开更多
This present study comes in addition to overcome the problems of separation of fine particles of TiO<sub>2</sub> in heterogeneous photocatalysis after treatment. It aims to show the potential for using tit...This present study comes in addition to overcome the problems of separation of fine particles of TiO<sub>2</sub> in heterogeneous photocatalysis after treatment. It aims to show the potential for using titaniferous sand as a new semiconductor under solar irradiation. The photocatalytic efficiency of this titaniferous sand was tested on a pesticide (Azadirachtin). A tubular photocatalytic reactor with recirculation of the polluting solution was designed for the elimination of the pesticide in an aqueous solution. Before its use as a photocatalyst, the titaniferous sand has undergone a specific treatment that consists of calcination at 600℃ followed by extraction of the calcined natural organic materials, which can interfere with the measurement of analytical parameters such as COD. The titaniferous sand was also characterized by X-ray fluorescence spectroscopy (XRF). XRF analyses have shown that TiO<sub>2</sub> is predominant in the titaniferous sand with a percentage that has been estimated at 46.34%. The influence of various experimental parameters such as the flow rate of the polluting solution, the concentration of titaniferous sand, the presence of oxygen and the intensity of the overall rate of sunshine, was studied to optimize the photocatalytic degradation of the pesticide. The results showed that the highest removal rate (70%) was observed under the following conditions: a pH of 6, a titaniferous sand concentration of 150 g/L, a flow rate of 0.3 mL/min, and a sunshine rate of 354 W/m<sup>2</sup> and in the presence of atmospheric oxygen. Under these experimental conditions, the rate of photodegradation of the pesticide follows the pseudo first order kinetic model of Langmuir Hinshelwood with a coefficient of determination R<sup>2</sup> of 0.9869 and an apparent rate constant of 0.0029 min<sup>-1</sup>. The results clearly demonstrated the potential of titaniferous sand as a photocatalyst sensitive to sunlight for the effective removal of pesticides in the aquatic environment.展开更多
The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introduci...The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introducing spin-polarized electrons in single-component photocatalytic materials emerged as a promising approach.However,the decreased redox ability of photocarriers in these materials becomes a new challenge.Herein,we mitigate this challenge with a carbon nitride sheet(CNs)/graphene nanoribbon(GNR)composite material that has a van der Waals heterostructures(vdWHs)and spin-polarized electron properties.Experimental results and theoretical calculations show that the heterostructure has a strong redox ability,high carrier-separation efficiency,and enhanced surface catalytic reaction.Consequently,the mixed-dimensional CNs/GNR vdWHs exhibit remarkable performance for H_(2)and O_(2)generation as well as CO_(2)production under visible-light irradiation without any cocatalyst.The spin-polarized vdWHs discovered in this study revealed a new type of photocatalytic materials and advanced the development of spintronics and photocatalysis.展开更多
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta...In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared...Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.展开更多
Hydrogenation and ammoniation of SrTiOa (STO), a normal ultraviolet photocatalyst, were performed by annealing STO(100) in Hz:N2=5%:95% and NH3, respectively, at various temperatures T. It was found that hydroge...Hydrogenation and ammoniation of SrTiOa (STO), a normal ultraviolet photocatalyst, were performed by annealing STO(100) in Hz:N2=5%:95% and NH3, respectively, at various temperatures T. It was found that hydrogenation at T≥900℃ remarkably enhanced the UV photocatalytic ability of STO, but the visible-light photocatalysis was still unavailable, while ammoniation at T≥800℃ introduced the N doping, resulting in visible-light photocat- alytie activity. Furthermore, when a hydrogenated STO was subjected to ammoniation, the visible-light photocatalytie ability was nearly the same as that of the ammoniated one; but the hydrogenation of an ammoniated one significantly enhanced visible-light photoeatalysis, indicating a synergetic effect of hydrogenation and ammoniation. Discussions and identifications have been made to analyze these results.展开更多
A thermal nitridation route for the assembly and polymerization of molecular triazine units to heptazine-based covalent frameworks has been successfully established. The obtained conjugated carbon nitride polymers fea...A thermal nitridation route for the assembly and polymerization of molecular triazine units to heptazine-based covalent frameworks has been successfully established. The obtained conjugated carbon nitride polymers feature nanostructures that show enhanced photocatalytic reactivity for hydrogen production under visible light irradiation.展开更多
To improve β-Bi2O3 photocatalysis,we couple β-Bi2O3 with BiO I to form β-Bi2O3/BiO I heterojunctions through an in-situ treatment with hydriodic acid. The prepared heterojunctions are characterized with X-ray diffr...To improve β-Bi2O3 photocatalysis,we couple β-Bi2O3 with BiO I to form β-Bi2O3/BiO I heterojunctions through an in-situ treatment with hydriodic acid. The prepared heterojunctions are characterized with X-ray diffraction,field emission scanning electron microscopy,transmission electron microscopy,ultra violet-diffuse reflectance spectroscopy,and X-ray photoelectron spectroscopy. Upon visible-light irradiation(λ 420 nm),the β-Bi2O3/BiO I heterojunctions,especially with the molar ratio of HI to β-Bi2O3 at 0.4,exhibit much higher photocatalytic activity than pure β-Bi2O3 and BiO I for the degradation of methyl orange. The efficient separation of photogenerated electron-hole pairs across the interface of the heterojunction between β-Bi2O3 and BiO I would be responsible for the enhanced photocatalytic performances.展开更多
N-K2Ti4O9/UiO-66-NH2 composites synthesized by a facile solvothermal method have a core-shell structure with UiO-66-NH2 forming the shell around a N-K2Ti4O9 core.Their photocatalytic activities in the degradation of d...N-K2Ti4O9/UiO-66-NH2 composites synthesized by a facile solvothermal method have a core-shell structure with UiO-66-NH2 forming the shell around a N-K2Ti4O9 core.Their photocatalytic activities in the degradation of dyes under visible light irradiation were investigated.The N-K2Ti4O9/UiO-66-NH2 composites exhibited higher photocatalytic activity than the pure components.This synergistic effect was due to the high adsorption capacity of UiO-66-NH2 and that the two components together induced an enhanced separation efficiency of photogenerated electron-hole pairs.The mass ratio of N-K2Ti4O9 to ZrCl4 of 3:7 in the composite exhibited the highest photocatalytic activity.Due to the electrostatic attraction between the negatively charged backbone of UiO-66-NH2with the positively charged groups of cationic dyes,the composites were more photocatalytically active for cationic dyes than for anionic dyes.展开更多
TiO_2 sols modified by rare earth (RE) ions (Ce^(4+), Eu^(3+), or Nd^(3+))were prepared by coprecipitation-peptization method. The photocatalysis activity was studied byinvestigating the photodegradation effects of ac...TiO_2 sols modified by rare earth (RE) ions (Ce^(4+), Eu^(3+), or Nd^(3+))were prepared by coprecipitation-peptization method. The photocatalysis activity was studied byinvestigating the photodegradation effects of active brilliant red dye X-3B. It is found that TiO_2sols modified by Ce^(4+), Eu^(3+), or Nd^(3+) have the anatase crystalline structure, which areprepared at 70℃. All RE^(n+)-TiO_2 sol samples have uniform nanoparticles with similar morphology,which are homogenously distributed in aqueous colloidal systems. The particle sizes are 10, 8, and12 nm for Nd^(3+)-TiO_2, Eu^(3+)-TiO_2, and Ce^(4+)-TiO_2, respectively. The character of ultrafineand positive charge sol particles contributes to the good adsorption of X-3B dye molecule on thesurface of titania (about 30% X-3B adsorption amount). Experimental results exhibit thatRE^(n+)-TiO_2 sol photocatalysts have the capability to photodegrade X-3B under visible lightirradiation. Nd^(3+)-TiO_2 and Eu^(3+)-TiO_2 show higher photocatalytic activity than Ce^(4+)-TiO_2,which is due to the difference of standard redox potential of RE^(n+)/RE^((n-1)+). RE^(n+)-TiO_2sols demonstrate more excellent interfacial adsorption and photodegradation effects to X-3B thanP_(25) TiO_2 crystallites. Moreover, the degradation mechanism of X-3B is proposed as dyephotosensitization and electron scavenging by rare earth ions.展开更多
基金supported by the National Natural Science Foundation of China(21875118,22111530112)the support from the Smart Sensing Interdisciplinary Science Center,Nankai University。
文摘Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.
基金supported primarily by the National Natural Science Foundation of China(Contract No.21975245,51972300,62274155,and U20A20206)the National Key Research and Development Program of China(Grant No.2018YFE0204000)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the National Natural Science Foundation of China under Grant No.62175231.Prof.Kong Liu appreciates the support from the Youth Innovation Promotion Association,the Chinese Academy of Sciences(No.2020114)the Beijing Nova Program(No.2020117).
文摘Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis.
基金supported by the National Natural Science Foundation of China(61974125)the Open Innovation Fund for undergraduate students of Xiamen University(KFJJ-202411).
文摘Semiconductor photocatalysis holds great promise for renewable energy generation and environment remediation,but generally suffers from the serious drawbacks on light absorption,charge generation and transport,and structural stability that limit the performance.The core-shell semiconductorgraphene(CSSG)nanoarchitectures may address these issues due to their unique structures with exceptional physical and chemical properties.This review explores recent advances of the CSSG nanoarchitectures in the photocatalytic performance.It starts with the classification of the CSSG nanoarchitectures by the dimensionality.Then,the construction methods under internal and external driving forces were introduced and compared with each other.Afterward,the physicochemical properties and photocatalytic applications of these nanoarchitectures were discussed,with a focus on their role in photocatalysis.It ends with a summary and some perspectives on future development of the CSSG nanoarchitectures toward highly efficient photocatalysts with extensive application.By harnessing the synergistic capabilities of the CSSG architectures,we aim to address pressing environmental and energy challenges and drive scientific progress in these fields.
基金National Natural Science Foundation of China(Grant No.52170073)National Engineering Research Center for Bioenergy(The Harbin Institute of Technology,Grant No.2021A001)Open Project of State Key Laboratory of Urban Water Resource and Environment(The Harbin Institute of Technology)(Grant No.HCK202112).
文摘In recent years,there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light,owing to their potential for energy and environmental applications.Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses.Anthraquinones(AQs)serve as redox-active electron transfer mediators and photochemically active organic photosensitizers,effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors.AQs offer advantages such as abundant raw materials,controlled preparation,excellent electron transfer capabilities,and photosensitivity,with applications spanning the energy,medical,and environmental sectors.Despite their utility,comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking.In this review,we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis,particularly in addressing key environmental challenges like clean energy production,antibacterial action,and pollutant degradation.However,AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination.To mitigate these issues,the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications.Additionally,future research directions are proposed to deepen the understanding of AQs'theoretical mechanisms and to provide practical applications for wastewater treatment.This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.
基金The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22102202,22088102,U22A20391)+1 种基金the DNL Cooperation Fund,CAS(DNL202016)the CAS Project for Young Scientists in Basic Research(YSBR-004).
文摘Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.
基金supported by the National Natural Science Foundation of China(51902045,51904059)Fundamental Research Funds for the Central Universities(N2002005,N2125004,N2225038,N2225044)+2 种基金Applied Basic Research Program of Liaoning(2022JH2/101300200)Young Elite Scientist Sponsorship Program by CAST(YESS)2019-2021QNRCNational Research Foundation of Korea(NRF)grant funded by the Korean government(Ministry of Science,ICT&Future Planning)(NRF-2020R1F1A1075601 and NRF-2021R1A4A2001658).
文摘Graphitic carbon nitride(g-C_(3)N_(4))is emerging as a promising visible-light photocatalyst while the low crystallinity with sluggish charge separation/migration dynamics significantly restricts its practical applications.Currently,synthesizing highly crystalline g-C_(3)N_(4) with sufficient surface activities still remains challenging.Herein,different from using alkali molten salts which is commonly reported,we propose an approach for synthesis of highly crystalline g-C_(3)N_(4) with FeCl3/KCl rock/molten mixed salts.The rock salt can serve as the structure-directing template while molten salt provides the required liquid medium for re-condensation.Intriguingly,the synthesized photocatalyst showed further enhanced crystallinity and improved surface area along with high p/p*excitation compared with crystalline C_(3)N_(4) prepared from conventional molten-salt methods.These catalytically advantageous features lead to its superior photocatalytic and piezocatalytic activities with a high reactivity for overall water splitting that is not commonly reported for C_(3)N_(4).This work provides an effective strategy for structural optimization of organic semiconductor based materials and may inspire new ideas for the design of advanced photocatalysts.
基金the National Natural Science Foundation of China (22209091)the Natural Science Foundation of Shandong Province (ZR2020QB057)+1 种基金the Key Program of National Natural Science Foundation of China (22133006)the Yankuang Group 2019 Science and Technology Program (YKKJ2019AJ05JG-R60)。
文摘It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.
基金supported by the National Natural Science Foundation of China(Nos.22078201,U1908202)Liaoning&Shenyang Key Laboratory of Functional Dye and Pigment(Nos.2021JH13/10200018,21-104-0-23)。
文摘4,4-Difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) is a sort of photofunctional dye which possesses advantages including strong light-capturing property, high photon-resistance, etc. Meso-N substituted aza-BODIPY is a crucial derivative of BODIPY scaffold that has the favorable optical properties and a significant spectral redshift. The photophysical properties can be tuned by molecular design, and the attenuation path of the excited state energy release of absorbed light energy can be well controlled via structural modifications, enabling tailored application. It has been extensively employed in life medicine fields including fluorescence imaging diagnosis, photodynamic therapy photosensitizer and photothermal therapy reagent and so forth. Extensive research and review have been performed in these areas. However, BODIPYs/aza-BODIPYs have a significant role in energy, catalysis, optoelectronics, photo-responsive materials and other fields. Nevertheless, there are relatively few studies and reviews in these fields on the modification and application based on BODIPY/aza-BODIPY scaffold. Herein, in this review we summarized the application of BODIPY/aza-BODIPY in the aforementioned fields, with the molecular regulation of dye as the foundation and the utilization in the above fields as the objective, in the intention of providing inspiration for the exploration of innovative BODIPY/aza-BODIPY research in the field of light resource conversion and functional materials.
基金supported by Huazhong University of Science and Technology(No.2021XXJS036,3004013134)National Natural Science Foundation of China(No.51903099,82002879,22102059)+2 种基金the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003)China Postdoctoral Science Foundation(2021M692475,2021T140524,XJ2021037)support from the 100 Talents Program of the Hubei Provincial Government。
文摘We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely COF-909-Cu,-Co or-Fe,where for the first time the diffusio-phoretic propulsion was utilized to design COF-based micro/nanomotors.The mechanism studies revealed that the metal ions decorated in the COF-909 backbone could promote the separation of electron and holes and trigger the production of sufficient ionic and reactive oxygen species under visible light irradiation.In this way,strong light-induced self-diffusiophoretic effect is achieved,resulting in good dispersion of COFs.Among them,COF-909-Fe showed the highest dispersion performance,along with a drastic decrease in particle size from 5μm to500 nm,within only 30 min light irradiation,which is inaccessible by using traditional magnetic stirring or ultrasonication methods.More importantly,benefiting from the outstanding dispersion efficiency,COF-909-Fe micro/nanomotors were demonstrated to be efficient in photocatalytic degradation of tetracycline,about 8 times faster than using traditional magnetic stirring method.This work opens up a new avenue to prepare isolated nanosized COFs in a high-fast,simple,and green manner.
基金the National Natural Science Foundation of China(22102126)the Natural Science Foundation of Hubei Province(2020CFB124)+2 种基金the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(Wuhan University of Science and Technology)the Hubei Provincial Department of Education for the"Chutian Scholar"programthe support of the"CUG Scholar"Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022187)。
文摘The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.
文摘This present study comes in addition to overcome the problems of separation of fine particles of TiO<sub>2</sub> in heterogeneous photocatalysis after treatment. It aims to show the potential for using titaniferous sand as a new semiconductor under solar irradiation. The photocatalytic efficiency of this titaniferous sand was tested on a pesticide (Azadirachtin). A tubular photocatalytic reactor with recirculation of the polluting solution was designed for the elimination of the pesticide in an aqueous solution. Before its use as a photocatalyst, the titaniferous sand has undergone a specific treatment that consists of calcination at 600℃ followed by extraction of the calcined natural organic materials, which can interfere with the measurement of analytical parameters such as COD. The titaniferous sand was also characterized by X-ray fluorescence spectroscopy (XRF). XRF analyses have shown that TiO<sub>2</sub> is predominant in the titaniferous sand with a percentage that has been estimated at 46.34%. The influence of various experimental parameters such as the flow rate of the polluting solution, the concentration of titaniferous sand, the presence of oxygen and the intensity of the overall rate of sunshine, was studied to optimize the photocatalytic degradation of the pesticide. The results showed that the highest removal rate (70%) was observed under the following conditions: a pH of 6, a titaniferous sand concentration of 150 g/L, a flow rate of 0.3 mL/min, and a sunshine rate of 354 W/m<sup>2</sup> and in the presence of atmospheric oxygen. Under these experimental conditions, the rate of photodegradation of the pesticide follows the pseudo first order kinetic model of Langmuir Hinshelwood with a coefficient of determination R<sup>2</sup> of 0.9869 and an apparent rate constant of 0.0029 min<sup>-1</sup>. The results clearly demonstrated the potential of titaniferous sand as a photocatalyst sensitive to sunlight for the effective removal of pesticides in the aquatic environment.
基金supported by the National Natural Science Foundation of China(Grant No.12104352 and 51973170)Fundamental Research Funds for the Central Universities(Grant No.XJS212208 and 2020BJ-56)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K67)the National Natural Science Foundation of Shaanxi Province under Grant No.2019JCW-17 and 2020JCW-15.
文摘The low separation efficiency of the photogenerated carrier and the poor activity of the surface redox reaction are the main barrier to further improvement of photocatalytic materials.To address these issues,introducing spin-polarized electrons in single-component photocatalytic materials emerged as a promising approach.However,the decreased redox ability of photocarriers in these materials becomes a new challenge.Herein,we mitigate this challenge with a carbon nitride sheet(CNs)/graphene nanoribbon(GNR)composite material that has a van der Waals heterostructures(vdWHs)and spin-polarized electron properties.Experimental results and theoretical calculations show that the heterostructure has a strong redox ability,high carrier-separation efficiency,and enhanced surface catalytic reaction.Consequently,the mixed-dimensional CNs/GNR vdWHs exhibit remarkable performance for H_(2)and O_(2)generation as well as CO_(2)production under visible-light irradiation without any cocatalyst.The spin-polarized vdWHs discovered in this study revealed a new type of photocatalytic materials and advanced the development of spintronics and photocatalysis.
基金supported by the Research and Development Institute at Nakhon Si Thammarat Rajabhat University and the Nanomaterials Chemistry Research Unit at Nakhon Si Thammarat Rajabhat University,Nakhon Si Thammarat,Thailand(Grant No.004/2563).
文摘In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金This work was supported by the Natural Science Foundation of Shanxi Province (No.2009011099), the Program for the Top Science and Technology Innovation Team of Higher Learning Institutions of Shanxi, and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.
文摘Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.
文摘Hydrogenation and ammoniation of SrTiOa (STO), a normal ultraviolet photocatalyst, were performed by annealing STO(100) in Hz:N2=5%:95% and NH3, respectively, at various temperatures T. It was found that hydrogenation at T≥900℃ remarkably enhanced the UV photocatalytic ability of STO, but the visible-light photocatalysis was still unavailable, while ammoniation at T≥800℃ introduced the N doping, resulting in visible-light photocat- alytie activity. Furthermore, when a hydrogenated STO was subjected to ammoniation, the visible-light photocatalytie ability was nearly the same as that of the ammoniated one; but the hydrogenation of an ammoniated one significantly enhanced visible-light photoeatalysis, indicating a synergetic effect of hydrogenation and ammoniation. Discussions and identifications have been made to analyze these results.
基金supported by the National Basic Research Program of China(973 Program2013CB632405)+3 种基金the National Natural Science Foundation of China(2142530921033003)the Specialized Research Fund for the Doctoral Program of Higher Education(20133514110003)the Department of Education of Fujian Province in China~~
文摘A thermal nitridation route for the assembly and polymerization of molecular triazine units to heptazine-based covalent frameworks has been successfully established. The obtained conjugated carbon nitride polymers feature nanostructures that show enhanced photocatalytic reactivity for hydrogen production under visible light irradiation.
基金supported by the National Natural Science Foundation of China(21273281)the National Basic Research Program of China(973 Program2013CB632405)~~
文摘To improve β-Bi2O3 photocatalysis,we couple β-Bi2O3 with BiO I to form β-Bi2O3/BiO I heterojunctions through an in-situ treatment with hydriodic acid. The prepared heterojunctions are characterized with X-ray diffraction,field emission scanning electron microscopy,transmission electron microscopy,ultra violet-diffuse reflectance spectroscopy,and X-ray photoelectron spectroscopy. Upon visible-light irradiation(λ 420 nm),the β-Bi2O3/BiO I heterojunctions,especially with the molar ratio of HI to β-Bi2O3 at 0.4,exhibit much higher photocatalytic activity than pure β-Bi2O3 and BiO I for the degradation of methyl orange. The efficient separation of photogenerated electron-hole pairs across the interface of the heterojunction between β-Bi2O3 and BiO I would be responsible for the enhanced photocatalytic performances.
基金supported by the National Natural Science Foundation of China (51372062)the Anhui Provincial Natural Science Foundation(1508085MB28,1308085MB21)~~
文摘N-K2Ti4O9/UiO-66-NH2 composites synthesized by a facile solvothermal method have a core-shell structure with UiO-66-NH2 forming the shell around a N-K2Ti4O9 core.Their photocatalytic activities in the degradation of dyes under visible light irradiation were investigated.The N-K2Ti4O9/UiO-66-NH2 composites exhibited higher photocatalytic activity than the pure components.This synergistic effect was due to the high adsorption capacity of UiO-66-NH2 and that the two components together induced an enhanced separation efficiency of photogenerated electron-hole pairs.The mass ratio of N-K2Ti4O9 to ZrCl4 of 3:7 in the composite exhibited the highest photocatalytic activity.Due to the electrostatic attraction between the negatively charged backbone of UiO-66-NH2with the positively charged groups of cationic dyes,the composites were more photocatalytically active for cationic dyes than for anionic dyes.
基金This work was financially supported by the Hi-Tech Research and Development Program (863 Program) of China (No. 2002AA302304)the National Natural Science Foundation of China (No. 60121101)the Education Department Foundation of Jiangsu Province (JHOl-
文摘TiO_2 sols modified by rare earth (RE) ions (Ce^(4+), Eu^(3+), or Nd^(3+))were prepared by coprecipitation-peptization method. The photocatalysis activity was studied byinvestigating the photodegradation effects of active brilliant red dye X-3B. It is found that TiO_2sols modified by Ce^(4+), Eu^(3+), or Nd^(3+) have the anatase crystalline structure, which areprepared at 70℃. All RE^(n+)-TiO_2 sol samples have uniform nanoparticles with similar morphology,which are homogenously distributed in aqueous colloidal systems. The particle sizes are 10, 8, and12 nm for Nd^(3+)-TiO_2, Eu^(3+)-TiO_2, and Ce^(4+)-TiO_2, respectively. The character of ultrafineand positive charge sol particles contributes to the good adsorption of X-3B dye molecule on thesurface of titania (about 30% X-3B adsorption amount). Experimental results exhibit thatRE^(n+)-TiO_2 sol photocatalysts have the capability to photodegrade X-3B under visible lightirradiation. Nd^(3+)-TiO_2 and Eu^(3+)-TiO_2 show higher photocatalytic activity than Ce^(4+)-TiO_2,which is due to the difference of standard redox potential of RE^(n+)/RE^((n-1)+). RE^(n+)-TiO_2sols demonstrate more excellent interfacial adsorption and photodegradation effects to X-3B thanP_(25) TiO_2 crystallites. Moreover, the degradation mechanism of X-3B is proposed as dyephotosensitization and electron scavenging by rare earth ions.