In his series of three papers we study singularly perturbed (SP) boundary valueproblems for equations of elliptic and parabolic type. For small values of the pertur-bation parameter parabolic boundary and interior lay...In his series of three papers we study singularly perturbed (SP) boundary valueproblems for equations of elliptic and parabolic type. For small values of the pertur-bation parameter parabolic boundary and interior layers appear in these problems.If classical discretisation methods are used, the solution of the finite differencescheme and the approximation of the diffusive flux do not converge uniformly withrespect to this parameter. Using the method of special, adapted grids, we canconstruct difference schemes that allow approximation of the solution and the nor-malised diffusive flux uniformly with respect to the small parameter.We also consider sillgularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly We study what problems ap-pear, when classical schemes are used for the approximation of the spatial deriva-tives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Diriclilet, Neumann and RDbin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions-展开更多
In this series of three papers we study singularly perturbed (SP) boundaryvalue problems for equations of eiliptic and parabolic type- For small values ofthe perturbation parameter parabolic boundary and interior laye...In this series of three papers we study singularly perturbed (SP) boundaryvalue problems for equations of eiliptic and parabolic type- For small values ofthe perturbation parameter parabolic boundary and interior layers appear in theseproblems. If classical discretisation methods are used, the solution of the finitedifference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, edapted grids,we can construct difference schemes that allow apprcximation of the solution andthe normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions.展开更多
In this series of three papers we study singularly perturbed (SP) boundary vaue problems for equations of elliptic and parabolic troe. For small values of the perturbation parameter parabolic boundary and interior lay...In this series of three papers we study singularly perturbed (SP) boundary vaue problems for equations of elliptic and parabolic troe. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids,we can construct difference schemes that allow approkimation of the solution and the normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges E-uniformly We study what problems appear, when classical schemes are used for the approximation of the spatial deriva tives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic eqllation with discontinuous boundaxy conditions展开更多
In this paper,we give a locally parabolic version of Tb theorem for a class of vector-valued operators with off-diagonal decay in L^(2) and certain quasi-orthogonality on a subspace of L^(2),in which the testing funct...In this paper,we give a locally parabolic version of Tb theorem for a class of vector-valued operators with off-diagonal decay in L^(2) and certain quasi-orthogonality on a subspace of L^(2),in which the testing functions themselves are also vector-valued.As an application,we establish the boundedness of layer potentials related to parabolic operators in divergence form,defined in the upper half-space Rn+2+:={(x,t,λ)∈R^(n+1)×(0,∞)},with uniformly complex elliptic,L^(∞),t,λ-independent coefficients,and satisfying the De Giorgi/Nash estimates.展开更多
A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically The numerical method consists of a special piecewise uniform mesh co...A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically The numerical method consists of a special piecewise uniform mesh condensing in a neighbourhood of the parabolic layer and a standard finite difference operator satisfying a discrete maximum principle. The numerical computations demonstrate numerically that the method is epsilon-uniform in the sense that the Fate of convergence and error constant of the method are independent of the singular perturbation parameter epsilon. This means that no matter how small the singular perturbation parameter epsilon is, the numerical method produces solutions with guaranteed accuracy depending solely on the number of mesh points used.展开更多
Theoretical analysis of the electromagnetic field distribution in the focal region of a long metallic parabolic reflector that has its surface covered with a magnetized plasma layer is derived. The incident wave is co...Theoretical analysis of the electromagnetic field distribution in the focal region of a long metallic parabolic reflector that has its surface covered with a magnetized plasma layer is derived. The incident wave is considered to be with a general oblique incidence for both parallel and perpendicular polarizations. The electromagnetic field intensity expressions along the focal region are obtained accurately using Maslov's method. The effects of plasma thickness on the reflected and transmitted field distributions are investigated. The effects of other physi- cal parameters such as the angle of incidence and the plasma and cyclotron frequencies on the transmitted field- intensity distribution along the focal region are also studied. The results obtained by Maslov's method and Kirchhoff's approximation are found to be in a good agreement.展开更多
文摘In his series of three papers we study singularly perturbed (SP) boundary valueproblems for equations of elliptic and parabolic type. For small values of the pertur-bation parameter parabolic boundary and interior layers appear in these problems.If classical discretisation methods are used, the solution of the finite differencescheme and the approximation of the diffusive flux do not converge uniformly withrespect to this parameter. Using the method of special, adapted grids, we canconstruct difference schemes that allow approximation of the solution and the nor-malised diffusive flux uniformly with respect to the small parameter.We also consider sillgularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly We study what problems ap-pear, when classical schemes are used for the approximation of the spatial deriva-tives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Diriclilet, Neumann and RDbin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions-
文摘In this series of three papers we study singularly perturbed (SP) boundaryvalue problems for equations of eiliptic and parabolic type- For small values ofthe perturbation parameter parabolic boundary and interior layers appear in theseproblems. If classical discretisation methods are used, the solution of the finitedifference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, edapted grids,we can construct difference schemes that allow apprcximation of the solution andthe normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection-diffusion equations. Also for these problems we construct special finite differenceschemes, the solution of which converges ε-uniformly. We study what problems appear, when classical schemes are used for the approximation of the spatial derivatives. We compare the results with those obtained by the adapted approach. Re-sults of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, andthen we consider respectively (i) Problems for SP parabolic equations, for whichthe solution and the normalised diffusive fluxes are required; (ii) Problems for SPelliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic equation with discontinuous boundary conditions.
文摘In this series of three papers we study singularly perturbed (SP) boundary vaue problems for equations of elliptic and parabolic troe. For small values of the perturbation parameter parabolic boundary and interior layers appear in these problems. If classical discretisation methods are used, the solution of the finite difference scheme and the approximation of the diffusive flux do not converge uniformly with respect to this parameter. Using the method of special, adapted grids,we can construct difference schemes that allow approkimation of the solution and the normalised diffusive flux uniformly with respect to the small parameter.We also consider singularly perturbed boundary value problems for convection diffusion equations. Also for these problems we construct special finite difference schemes, the solution of which converges E-uniformly We study what problems appear, when classical schemes are used for the approximation of the spatial deriva tives. We compare the results with those obtained by the adapted approach. Results of numerical experiments are discussed.In the three papers we first give an introduction on the general problem, and then we consider respectively (i) Problems for SP parabolic equations, for which the solution and the normalised diffusive fluxes are required; (ii) Problems for SP elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type;(iii) Problems for SP parabolic eqllation with discontinuous boundaxy conditions
基金Supported by Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220324)Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.22KJB110016)。
文摘In this paper,we give a locally parabolic version of Tb theorem for a class of vector-valued operators with off-diagonal decay in L^(2) and certain quasi-orthogonality on a subspace of L^(2),in which the testing functions themselves are also vector-valued.As an application,we establish the boundedness of layer potentials related to parabolic operators in divergence form,defined in the upper half-space Rn+2+:={(x,t,λ)∈R^(n+1)×(0,∞)},with uniformly complex elliptic,L^(∞),t,λ-independent coefficients,and satisfying the De Giorgi/Nash estimates.
文摘A singularly perturbed linear convection-diffusion problem for heat transfer in two dimensions with a parabolic boundary layer is solved numerically The numerical method consists of a special piecewise uniform mesh condensing in a neighbourhood of the parabolic layer and a standard finite difference operator satisfying a discrete maximum principle. The numerical computations demonstrate numerically that the method is epsilon-uniform in the sense that the Fate of convergence and error constant of the method are independent of the singular perturbation parameter epsilon. This means that no matter how small the singular perturbation parameter epsilon is, the numerical method produces solutions with guaranteed accuracy depending solely on the number of mesh points used.
基金the Deanship of Scientific Research at King Saud University for its funding of this work through the Research Group Project No. RG-1436-001
文摘Theoretical analysis of the electromagnetic field distribution in the focal region of a long metallic parabolic reflector that has its surface covered with a magnetized plasma layer is derived. The incident wave is considered to be with a general oblique incidence for both parallel and perpendicular polarizations. The electromagnetic field intensity expressions along the focal region are obtained accurately using Maslov's method. The effects of plasma thickness on the reflected and transmitted field distributions are investigated. The effects of other physi- cal parameters such as the angle of incidence and the plasma and cyclotron frequencies on the transmitted field- intensity distribution along the focal region are also studied. The results obtained by Maslov's method and Kirchhoff's approximation are found to be in a good agreement.